The Arthritis Barrier: Long-Term Effects of ACL Trauma on Knee Joint Health

  • Emily Eichner
  • Bruce BeynnonEmail author


Anterior cruciate ligament (ACL) trauma increases the risk of post-traumatic osteoarthritis (PTOA). Athletes have a greater prevalence of PTOA and experience symptoms at a younger age than the general population, making this topic an important consideration in the medical treatment of ACL-injured athletes. Concomitant injury to other structures about the knee such as articular cartilage lesions, traumatic bone marrow lesions, meniscus tears, and other ligament tears significantly increases the risk of PTOA compared to isolated ACL tears. There is not an established improvement in PTOA outcomes between surgical reconstruction versus nonsurgical treatment of ACL tears, although some studies suggest these findings may not apply to elite athletes. The literature has not definitively established the impact of ACL reconstruction timing or the graft type on the development of PTOA. It remains unclear if a different PTOA disease process exists between the patellofemoral and tibiofemoral joints. Some evidence suggests a delayed return to sports for athletes following ACL reconstruction could help limit damage to knee structures. Some studies have found no increase in PTOA rates for athletes who return to sport compared to those who do not. Overall, there is a need for more PTOA research specific to athlete populations.


Post-traumatic osteoarthritis Anterior cruciate ligament trauma Anterior cruciate ligament reconstruction Athlete Articular cartilage 


  1. 1.
    Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69. Scholar
  2. 2.
    Ahn JH, Kim JG, Wang JH, Jung CH, Lim HC. Long-term results of anterior cruciate ligament reconstruction using bone-patellar tendon-bone: an analysis of the factors affecting the development of osteoarthritis. Arthroscopy. 2012;28(8):1114–23. Scholar
  3. 3.
    Pedoia V, Su F, Amano K, Li Q, McCulloch CE, Souza RB, et al. Analysis of the articular cartilage T1rho and T2 relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. J Orthop Res. 2017;35(3):707–17. Scholar
  4. 4.
    Williams A, Winalski CS, Chu CR. Early articular cartilage MRI T2 changes after anterior cruciate ligament reconstruction correlate with later changes in T2 and cartilage thickness. J Orthop Res. 2017;35(3):699–706. Scholar
  5. 5.
    Chen E, Amano K, Pedoia V, Souza RB, Ma CB, Li X. Longitudinal analysis of tibiofemoral cartilage contact area and position in ACL reconstructed patients. J Orthop Res. 2018;36(10):2718–27. Scholar
  6. 6.
    Van Ginckel A, Verdonk P, Witvrouw E. Cartilage adaptation after anterior cruciate ligament injury and reconstruction: implications for clinical management and research? A systematic review of longitudinal MRI studies. Osteoarthr Cartil. 2013;21(8):1009–24. Scholar
  7. 7.
    Neuman P, Tjornstrand J, Svensson J, Ragnarsson C, Roos H, Englund M, et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury--comparison with asymptomatic volunteers. Osteoarthr Cartil. 2011;19(8):977–83. Scholar
  8. 8.
    Lonza GC, Gardner-Morse MG, Vacek PM, Beynnon BD. Radiographic-based measurement of tibiofemoral joint space width and magnetic resonance imaging derived articular cartilage thickness are not related in subjects at risk for post traumatic arthritis of the knee. J Orthop Res. 2019;37(5):1052–8. Scholar
  9. 9.
    Anderson DD, Chubinskaya S, Guilak F, Martin JA, Oegema TR, Olson SA, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res. 2011;29(6):802–9. Scholar
  10. 10.
    Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, et al. Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. 2014;42(9):2242–52. Scholar
  11. 11.
    Barenius B, Ponzer S, Shalabi A, Bujak R, Norlen L, Eriksson K. Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial. Am J Sports Med. 2014;42(5):1049–57. Scholar
  12. 12.
    Jones MH, Spindler KP. Risk factors for radiographic joint space narrowing and patient reported outcomes of post-traumatic osteoarthritis after ACL reconstruction: data from the MOON cohort. J Orthop Res. 2017;35(7):1366–74. Scholar
  13. 13.
    Spindler KP, Huston LJ, Chagin KM, Kattan MW, Reinke EK, Amendola A, et al. Ten-year outcomes and risk factors after anterior cruciate ligament reconstruction: a MOON longitudinal prospective cohort study. Am J Sports Med. 2018;46(4):815–25. Scholar
  14. 14.
    Li RT, Lorenz S, Xu Y, Harner CD, Fu FH, Irrgang JJ. Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction. Am J Sports Med. 2011;39(12):2595–603. Scholar
  15. 15.
    Amano K, Huebner JL, Stabler TV, Tanaka M, McCulloch CE, Lobach I, et al. Synovial fluid profile at the time of anterior cruciate ligament reconstruction and its association with cartilage matrix composition 3 years after surgery. Am J Sports Med. 2018;46(4):890–9. Scholar
  16. 16.
    Doherty M, Watt I, Dieppe P. Influence of primary generalised osteoarthritis on development of secondary osteoarthritis. Lancet. 1983;2(8340):8–11.CrossRefGoogle Scholar
  17. 17.
    Englund M, Paradowski PT, Lohmander LS. Association of radiographic hand osteoarthritis with radiographic knee osteoarthritis after meniscectomy. Arthritis Rheum. 2004;50(2):469–75. Scholar
  18. 18.
    van Yperen DT, Reijman M, van Es EM, Bierma-Zeinstra SMA, Meuffels DE. Twenty-year follow-up study comparing operative versus nonoperative treatment of anterior cruciate ligament ruptures in high-level athletes. Am J Sports Med. 2018;46(5):1129–36. Scholar
  19. 19.
    Madaleno FO, Santos BA, Araujo VL, Oliveira VC, Resende RA. Prevalence of knee osteoarthritis in former athletes: a systematic review with meta-analysis. Braz J Phys Ther. 2018;22:437–51. Scholar
  20. 20.
    Driban JB, Hootman JM, Sitler MR, Harris KP, Cattano NM. Is participation in certain sports associated with knee osteoarthritis? A systematic review. J Athl Train. 2017;52(6):497–506. Scholar
  21. 21.
    Smith MV, Nepple JJ, Wright RW, Matava MJ, Brophy RH. Knee osteoarthritis is associated with previous meniscus and anterior cruciate ligament surgery among Elite College American football athletes. Sports Health. 2017;9(3):247–51. Scholar
  22. 22.
    Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52. Scholar
  23. 23.
    von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004;63(3):269–73.CrossRefGoogle Scholar
  24. 24.
    Simon JE, Grooms DR, Docherty CL. The long term impact of osteoarthritis following knee surgery in former collegiate athletes. J Sport Rehabil. 2017:1–19. Scholar
  25. 25.
    Losina E, Weinstein AM, Reichmann WM, Burbine SA, Solomon DH, Daigle ME, et al. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res. 2013;65(5):703–11. Scholar
  26. 26.
    Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med. 2005;33(10):1579–602. Scholar
  27. 27.
    Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part 2. Am J Sports Med. 2005;33(11):1751–67. Scholar
  28. 28.
    Bowers AL, Spindler KP, McCarty EC, Arrigain S. Height, weight, and BMI predict intra-articular injuries observed during ACL reconstruction: evaluation of 456 cases from a prospective ACL database. Clin J Sport Med. 2005;15(1):9–13.CrossRefGoogle Scholar
  29. 29.
    Noyes FR, Bassett RW, Grood ES, Butler DL. Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries. J Bone Joint Surg. 1980;62(5):687–95, 757.CrossRefGoogle Scholar
  30. 30.
    Piasecki DP, Spindler KP, Warren TA, Andrish JT, Parker RD. Intraarticular injuries associated with anterior cruciate ligament tear: findings at ligament reconstruction in high school and recreational athletes. An analysis of sex-based differences. Am J Sports Med. 2003;31(4):601–5. Scholar
  31. 31.
    Speer KP, Spritzer CE, Goldner JL, Garrett WE Jr. Magnetic resonance imaging of traumatic knee articular cartilage injuries. Am J Sports Med. 1991;19(4):396–402. Scholar
  32. 32.
    Vellet AD, Marks PH, Fowler PJ, Munro TG. Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology. 1991;178(1):271–6. Scholar
  33. 33.
    Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear. N Engl J Med. 2008;359(20):2135–42. Scholar
  34. 34.
    Risberg MA, Oiestad BE, Gunderson R, Aune AK, Engebretsen L, Culvenor A, et al. Changes in knee osteoarthritis, symptoms, and function after anterior cruciate ligament reconstruction: a 20-year prospective follow-up study. Am J Sports Med. 2016;44(5):1215–24. Scholar
  35. 35.
    Slauterbeck JR, Kousa P, Clifton BC, Naud S, Tourville TW, Johnson RJ, et al. Geographic mapping of meniscus and cartilage lesions associated with anterior cruciate ligament injuries. J Bone Joint Surg. 2009;91(9):2094–103. Scholar
  36. 36.
    Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock MI, Keays AC. Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med. 2010;38(3):455–63. Scholar
  37. 37.
    Argentieri EC, Sturnick DR, DeSarno MJ, Gardner-Morse MG, Slauterbeck JR, Johnson RJ, et al. Changes to the articular cartilage thickness profile of the tibia following anterior cruciate ligament injury. Osteoarthr Cartil. 2014;22(10):1453–60. Scholar
  38. 38.
    Owusu-Akyaw KA, Kim SY, Spritzer CE, Collins AT, Englander ZA, Utturkar GM, et al. Determination of the position of the knee at the time of an anterior cruciate ligament rupture for male versus female patients by an analysis of bone bruises. Am J Sports Med. 2018;46(7):1559–65. Scholar
  39. 39.
    Lynch TC, Crues JV 3rd, Morgan FW, Sheehan WE, Harter LP, Ryu R. Bone abnormalities of the knee: prevalence and significance at MR imaging. Radiology. 1989;171(3):761–6. Scholar
  40. 40.
    Newberg AH, Wetzner SM. Bone bruises: their patterns and significance. Semin Ultrasound CT MR. 1994;15(5):396–409.CrossRefGoogle Scholar
  41. 41.
    Eustace S, Keogh C, Blake M, Ward RJ, Oder PD, Dimasi M. MR imaging of bone oedema: mechanisms and interpretation. Clin Radiol. 2001;56(1):4–12. Scholar
  42. 42.
    Sievanen H, Kannus P, Heinonen A, Oja P, Vuori I. Bone mineral density and muscle strength of lower extremities after long-term strength training, subsequent knee ligament injury and rehabilitation: a unique 2-year follow-up of a 26-year-old female student. Bone. 1994;15(1):85–90.CrossRefGoogle Scholar
  43. 43.
    Kannus P, Sievanen H, Jarvinen M, Heinonen A, Oja P, Vuori I. A cruciate ligament injury produces considerable, permanent osteoporosis in the affected knee. J Bone Miner Res. 1992;7(12):1429–34. Scholar
  44. 44.
    van Meer BL, Oei EH, Bierma-Zeinstra SM, van Arkel ER, Verhaar JA, Reijman M, et al. Are magnetic resonance imaging recovery and laxity improvement possible after anterior cruciate ligament rupture in nonoperative treatment? Arthroscopy. 2014;30(9):1092–9. Scholar
  45. 45.
    Bayar A, Sarikaya S, Keser S, Ozdolap S, Tuncay I, Ege A. Regional bone density changes in anterior cruciate ligament deficient knees: a DEXA study. Knee. 2008;15(5):373–7. Scholar
  46. 46.
    Nyland J, Fisher B, Brand E, Krupp R, Caborn DN. Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy. 2010;26(9):1248–57. Scholar
  47. 47.
    Frobell RB, Roos HP, Roos EM, Hellio Le Graverand MP, Buck R, Tamez-Pena J, et al. The acutely ACL injured knee assessed by MRI: are large volume traumatic bone marrow lesions a sign of severe compression injury? Osteoarthr Cartil. 2008;16(7):829–36. Scholar
  48. 48.
    Papalia R, Torre G, Vasta S, Zampogna B, Pedersen DR, Denaro V, et al. Bone bruises in anterior cruciate ligament injured knee and long-term outcomes. A review of the evidence. Open Access J Sports Med. 2015;6:37–48. Scholar
  49. 49.
    Li H, Chen C, Chen S. Posttraumatic knee osteoarthritis following anterior cruciate ligament injury: potential biochemical mediators of degenerative alteration and specific biochemical markers. Biomed Rep. 2015;3(2):147–51. Scholar
  50. 50.
    Struglics A, Okroj M, Sward P, Frobell R, Saxne T, Lohmander LS, et al. The complement system is activated in synovial fluid from subjects with knee injury and from patients with osteoarthritis. Arthritis Res Ther. 2016;18(1):223. Scholar
  51. 51.
    Coughlin TR, Kennedy OD. The role of subchondral bone damage in post-traumatic osteoarthritis. Ann N Y Acad Sci. 2016;1383(1):58–66. Scholar
  52. 52.
    Koster IM, Oei EH, Hensen JH, Boks SS, Koes BW, Vroegindeweij D, et al. Predictive factors for new onset or progression of knee osteoarthritis one year after trauma: MRI follow-up in general practice. Eur Radiol. 2011;21(7):1509–16. Scholar
  53. 53.
    Theologis AA, Kuo D, Cheng J, Bolbos RI, Carballido-Gamio J, Ma CB, et al. Evaluation of bone bruises and associated cartilage in anterior cruciate ligament-injured and -reconstructed knees using quantitative t(1rho) magnetic resonance imaging: 1-year cohort study. Arthroscopy. 2011;27(1):65–76. Scholar
  54. 54.
    Gong J, Pedoia V, Facchetti L, Link TM, Ma CB, Li X. Bone marrow edema-like lesions (BMELs) are associated with higher T1rho and T2 values of cartilage in anterior cruciate ligament (ACL)-reconstructed knees: a longitudinal study. Quant Imaging Med Surg. 2016;6(6):661–70. Scholar
  55. 55.
    Frobell RB. Change in cartilage thickness, posttraumatic bone marrow lesions, and joint fluid volumes after acute ACL disruption: a two-year prospective MRI study of sixty-one subjects. J Bone Joint Surg. 2011;93(12):1096–103. Scholar
  56. 56.
    Nordenvall R, Bahmanyar S, Adami J, Mattila VM, Fellander-Tsai L. Cruciate ligament reconstruction and risk of knee osteoarthritis: the association between cruciate ligament injury and post-traumatic osteoarthritis. a population based nationwide study in Sweden, 1987-2009. PLoS One. 2014;9(8):e104681. Scholar
  57. 57.
    Magnussen RA, Duthon V, Servien E, Neyret P. Anterior cruciate ligament reconstruction and osteoarthritis: evidence from long-term follow-up and potential solutions. Cartilage. 2013;4(3 Suppl):22s–6s. Scholar
  58. 58.
    Oiestad BE, Engebretsen L, Storheim K, Risberg MA. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med. 2009;37(7):1434–43. Scholar
  59. 59.
    Claes S, Hermie L, Verdonk R, Bellemans J, Verdonk P. Is osteoarthritis an inevitable consequence of anterior cruciate ligament reconstruction? A meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013;21(9):1967–76. Scholar
  60. 60.
    Oiestad BE, Holm I, Aune AK, Gunderson R, Myklebust G, Engebretsen L, et al. Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow-up. Am J Sports Med. 2010;38(11):2201–10. Scholar
  61. 61.
    van Meer BL, Meuffels DE, van Eijsden WA, Verhaar JA, Bierma-Zeinstra SM, Reijman M. Which determinants predict tibiofemoral and patellofemoral osteoarthritis after anterior cruciate ligament injury? A systematic review. Br J Sports Med. 2015;49(15):975–83. Scholar
  62. 62.
    Frobell RB, Roos EM, Roos HP, Ranstam J, Lohmander LS. A randomized trial of treatment for acute anterior cruciate ligament tears. N Engl J Med. 2010;363(4):331–42. Scholar
  63. 63.
    Frobell RB, Roos HP, Roos EM, Roemer FW, Ranstam J, Lohmander LS. Treatment for acute anterior cruciate ligament tear: five year outcome of randomised trial. BMJ. 2013;346:f232. Scholar
  64. 64.
    Meuffels DE, Favejee MM, Vissers MM, Heijboer MP, Reijman M, Verhaar JA. Ten year follow-up study comparing conservative versus operative treatment of anterior cruciate ligament ruptures. A matched-pair analysis of high level athletes. Br J Sports Med. 2009;43(5):347–51. Scholar
  65. 65.
    Larsson S, Struglics A, Lohmander LS, Frobell R. Surgical reconstruction of ruptured anterior cruciate ligament prolongs trauma-induced increase of inflammatory cytokines in synovial fluid: an exploratory analysis in the KANON trial. Osteoarthr Cartil. 2017;25(9):1443–51. Scholar
  66. 66.
    Hunter DJ, Lohmander LS, Makovey J, Tamez-Pena J, Totterman S, Schreyer E, et al. The effect of anterior cruciate ligament injury on bone curvature: exploratory analysis in the KANON trial. Osteoarthr Cartil. 2014;22(7):959–68. Scholar
  67. 67.
    Frobell RB, Le Graverand MP, Buck R, Roos EM, Roos HP, Tamez-Pena J, et al. The acutely ACL injured knee assessed by MRI: changes in joint fluid, bone marrow lesions, and cartilage during the first year. Osteoarthr Cartil. 2009;17(2):161–7. Scholar
  68. 68.
    Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP, Phelan D, et al. Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med. 2005;33(3):335–46. Scholar
  69. 69.
    Chinzei N, Brophy RH, Duan X, Cai L, Nunley RM, Sandell LJ, et al. Molecular influence of anterior cruciate ligament tear remnants on chondrocytes: a biologic connection between injury and osteoarthritis. Osteoarthr Cartil. 2018;26(4):588–99. Scholar
  70. 70.
    Van Ginckel A, Verdonk P, Victor J, Witvrouw E. Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(3):550–9. Scholar
  71. 71.
    Mascarenhas R, Tranovich MJ, Kropf EJ, Fu FH, Harner CD. Bone-patellar tendon-bone autograft versus hamstring autograft anterior cruciate ligament reconstruction in the young athlete: a retrospective matched analysis with 2-10 year follow-up. Knee Surg Sports Traumatol Arthrosc. 2012;20(8):1520–7. Scholar
  72. 72.
    Ettinger M, Etter F, Calliess T, Bohnsack M, Becher C. Long term results of bone-patella-tendon-bone ACL reconstruction. J Orthop. 2017;14(1):91–4. Scholar
  73. 73.
    Thompson SM, Salmon LJ, Waller A, Linklater J, Roe JP, Pinczewski LA. Twenty-year outcome of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon or hamstring autograft. Am J Sports Med. 2016;44(12):3083–94. Scholar
  74. 74.
    Xie X, Xiao Z, Li Q, Zhu B, Chen J, Chen H, et al. Increased incidence of osteoarthritis of knee joint after ACL reconstruction with bone-patellar tendon-bone autografts than hamstring autografts: a meta-analysis of 1,443 patients at a minimum of 5 years. Eur J Orthop Surg Traumatol. 2015;25(1):149–59. Scholar
  75. 75.
    Holm I, Oiestad BE, Risberg MA, Aune AK. No difference in knee function or prevalence of osteoarthritis after reconstruction of the anterior cruciate ligament with 4-strand hamstring autograft versus patellar tendon-bone autograft: a randomized study with 10-year follow-up. Am J Sports Med. 2010;38(3):448–54. Scholar
  76. 76.
    Mascarenhas R, Tranovich M, Karpie JC, Irrgang JJ, Fu FH, Harner CD. Patellar tendon anterior cruciate ligament reconstruction in the high-demand patient: evaluation of autograft versus allograft reconstruction. Arthroscopy. 2010;26(9 Suppl):S58–66. Scholar
  77. 77.
    Culvenor AG, Cook JL, Collins NJ, Crossley KM. Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review. Br J Sports Med. 2013;47(2):66–70. Scholar
  78. 78.
    Nebelung W, Wuschech H. Thirty-five years of follow-up of anterior cruciate ligament-deficient knees in high-level athletes. Arthroscopy. 2005;21(6):696–702. Scholar
  79. 79.
    Hoffelner T, Resch H, Moroder P, Atzwanger J, Wiplinger M, Hitzl W, et al. No increased occurrence of osteoarthritis after anterior cruciate ligament reconstruction after isolated anterior cruciate ligament injury in athletes. Arthroscopy. 2012;28(4):517–25. Scholar
  80. 80.
    Culvenor AG, Patterson BE, Guermazi A, Morris HG, Whitehead TS, Crossley KM. Accelerated return to sport after anterior cruciate ligament reconstruction and early knee osteoarthritis features at 1 year: an exploratory study. PM R. 2018;10(4):349–56. Scholar
  81. 81.
    Oiestad BE, Holm I, Risberg MA. Return to pivoting sport after ACL reconstruction: association with osteoarthritis and knee function at the 15-year follow-up. Br J Sports Med. 2018;52(18):1199–204. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Orthopaedics and RehabilitationRobert Larner College of Medicine, University of VermontBurlingtonUSA

Personalised recommendations