Return-to-Sport Considerations in the Pre-Adolescent Athlete

  • Jessica L. Traver
  • Mininder S. KocherEmail author


There has been a rise in the number of anterior cruciate ligament (ACL) tears sustained in both the pre-adolescent and adolescent patient populations. There are several factors which should be considered when approaching the surgical management of a skeletally immature patient with an ACL tear. Technical considerations include assessing for bone age to assist with selecting an appropriate surgical technique and graft, sparing the physis when necessary, and being aware of potential complications. Postoperative rehabilitation protocols and return-to-sport testing should be altered to account for the emotional and neuromuscular maturity of the pre-adolescent patient. There are also a variety of psychosocial variables including psychological readiness and fear of reinjury. All these variables and more need to be addressed and discussed with patients and their parents to optimize both expectations and outcomes.


Anterior cruciate ligament ACL reconstruction Skeletally immature Pre-adolescent 


  1. 1.
    Werner BC, Yang S, Looney AM, Gwathmey FW Jr. Trends in pediatric and adolescent anterior cruciate ligament injury and reconstruction. J Pediatr Orthop. 2016;36(5):447–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Dekker TJ, Rush JK, Schmitz MR. What’s new in pediatric and adolescent anterior cruciate ligament injuries? J Pediatr Orthop. 2018;38(3):185–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Tepolt FA, Feldman L, Kocher MS. Trends in pediatric ACL reconstruction from the PHIS database. J Pediatr Orthop. 2018;38(9):e490–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Frank JS, Gambacorta PL. Anterior cruciate ligament injuries in the skeletally immature athlete: diagnosis and management. J Am Acad Orthop Surg. 2013;21(2):78–87.PubMedCrossRefGoogle Scholar
  5. 5.
    Ramski DE, Kanj WW, Franklin CC, Baldwin KD, Ganley TJ. Anterior cruciate ligament tears in children and adolescents: a meta-analysis of nonoperative versus operative treatment. Am J Sports Med. 2014;42(11):2769–76.PubMedCrossRefGoogle Scholar
  6. 6.
    Patel NM, Talathi NS, Talwar D, et al. Factors affecting the preferred surgical technique in pediatric anterior cruciate ligament reconstruction. Orthop J Sports Med. 2018;6(9):2325967118796171.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kocher MS, Saxon HS, Hovis WD, Hawkins RJ. Management and complications of anterior cruciate ligament injuries in skeletally immature patients: survey of the Herodicus Society and The ACL Study Group. J Pediatr Orthop. 2002;22(4):452–7.PubMedGoogle Scholar
  8. 8.
    Ardern CL, Ekas G, Grindem H, et al. 2018 international olympic committee consensus statement on prevention, diagnosis, and management of pediatric anterior cruciate ligament injuries. Orthop J Sports Med. 2018;6(3):2325967118759953.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Greulich WWPS. Radiographic atlas of skeletal development of the hand and wrist. 2nd ed. Stanford: Stanford University Press; 1959.Google Scholar
  10. 10.
    Sanders JO, Khoury JG, Kishan S, et al. Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. J Bone Joint Surg Am. 2008;90(3):540–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Heyworth BE, Osei DA, Fabricant PD, et al. The shorthand bone age assessment: a simpler alternative to current methods. J Pediatr Orthop. 2013;33(5):569–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Engelman GH, Carry PM, Hitt KG, Polousky JD, Vidal AF. Comparison of allograft versus autograft anterior cruciate ligament reconstruction graft survival in an active adolescent cohort. Am J Sports Med. 2014;42(10):2311–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Kaeding CC, Aros B, Pedroza A, et al. Allograft versus autograft anterior cruciate ligament reconstruction: predictors of failure from a MOON prospective longitudinal cohort. Sports Health. 2011;3(1):73–81.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kocher MS, Micheli LJ, Zurakowski D, Luke A. Partial tears of the anterior cruciate ligament in children and adolescents. Am J Sports Med. 2002;30(5):697–703.PubMedCrossRefGoogle Scholar
  15. 15.
    Lang PJ, Sugimoto D, Micheli LJ. Prevention, treatment, and rehabilitation of anterior cruciate ligament injuries in children. Open Access J Sports Med. 2017;8:133–41.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Milewski MD, Beck NA, Lawrence JT, Ganley TJ. Anterior cruciate ligament reconstruction in the young athlete: a treatment algorithm for the skeletally immature. Clin Sports Med. 2011;30(4):801–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Kocher MS, Garg S, Micheli LJ. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. J Bone Joint Surg Am. 2005;87(11):2371–9.PubMedGoogle Scholar
  18. 18.
    Kocher MS, Heyworth BE, Fabricant PD, Tepolt FA, Micheli LJ. Outcomes of physeal-sparing ACL reconstruction with iliotibial band autograft in skeletally immature prepubescent children. J Bone Joint Surg Am. 2018;100(13):1087–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Anderson AF. Transepiphyseal replacement of the anterior cruciate ligament in skeletally immature patients. A preliminary report. J Bone Joint Surg Am. 2003;85-A(7):1255–63.CrossRefGoogle Scholar
  20. 20.
    Lawrence JT, Bowers AL, Belding J, Cody SR, Ganley TJ. All-epiphyseal anterior cruciate ligament reconstruction in skeletally immature patients. Clin Orthop Relat Res. 2010;468(7):1971–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kruse LM, Gray BL, Wright RW. Anterior cruciate ligament reconstruction rehabilitation in the pediatric population. Clin Sports Med. 2011;30(4):817–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Kushner AM, Kiefer AW, Lesnick S, Faigenbaum AD, Kashikar-Zuck S, Myer GD. Training the developing brain part II: cognitive considerations for youth instruction and feedback. Curr Sports Med Rep. 2015;14(3):235–43.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    National Center for Injury Prevention and Control. CDC injury research agenda 2009–2018. Accessed 20 Oct 2018.
  24. 24.
    Hutchinson AB, Yao P, Hutchinson MR. Single-leg balance and core motor control in children: when does the risk for ACL injury occurs? BMJ Open Sport Exerc Med. 2016;2(1):e000135.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Holden S, Boreham C, Doherty C, Wang D, Delahunt E. Clinical assessment of countermovement jump landing kinematics in early adolescence: sex differences and normative values. Clin Biomech (Bristol, Avon). 2015;30(5):469–74.CrossRefGoogle Scholar
  26. 26.
    Moksnes H, Engebretsen L, Risberg MA. Management of anterior cruciate ligament injuries in skeletally immature individuals. J Orthop Sports Phys Ther. 2012;42(3):172–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Moksnes H, Grindem H. Prevention and rehabilitation of paediatric anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):730–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Sugimoto D, Heyworth BE, Brodeur JJ, Kramer DE, Kocher MS, Micheli LJ. Effect of graft type on balance and hop tests in adolescent males following anterior cruciate ligament reconstruction. J Sport Rehabil. 2018:1–27. Scholar
  29. 29.
    Yellin JL, Fabricant PD, Gornitzky A, et al. Rehabilitation following anterior cruciate ligament tears in children: a systematic review. JBJS Rev. 2016;4(1). Scholar
  30. 30.
    Greenberg EM, Greenberg ET, Ganley TJ, Lawrence JT. Strength and functional performance recovery after anterior cruciate ligament reconstruction in preadolescent athletes. Sports Health. 2014;6(4):309–12.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hartigan EH, Axe MJ, Snyder-Mackler L. Time line for noncopers to pass return-to-sports criteria after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2010;40(3):141–54.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wren TAL, Mueske NM, Brophy CH, et al. Hop distance symmetry does not indicate normal landing biomechanics in adolescent athletes with recent anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2018;48(8):622–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Graziano J, Chiaia T, de Mille P, Nawabi DH, Green DW, Cordasco FA. Return to sport for skeletally immature athletes after ACL reconstruction: preventing a second injury using a quality of movement assessment and quantitative measures to address modifiable risk factors. Orthop J Sports Med. 2017;5(4):2325967117700599.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sterett WI, Briggs KK, Farley T, Steadman JR. Effect of functional bracing on knee injury in skiers with anterior cruciate ligament reconstruction: a prospective cohort study. Am J Sports Med. 2006;34(10):1581–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Dai B, Butler RJ, Garrett WE, Queen RM. Anterior cruciate ligament reconstruction in adolescent patients: limb asymmetry and functional knee bracing. Am J Sports Med. 2012;40(12):2756–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Birmingham TB, Bryant DM, Giffin JR, et al. A randomized controlled trial comparing the effectiveness of functional knee brace and neoprene sleeve use after anterior cruciate ligament reconstruction. Am J Sports Med. 2008;36(4):648–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Albright JC, Crepeau AE. Functional bracing and return to play after anterior cruciate ligament reconstruction in the pediatric and adolescent patient. Clin Sports Med. 2011;30(4):811–5.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Padaki AS, Noticewala MS, Levine WN, Ahmad CS, Popkin MK, Popkin CA. Prevalence of posttraumatic stress disorder symptoms among young athletes after anterior cruciate ligament rupture. Orthop J Sports Med. 2018;6(7):2325967118787159.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Paterno MV, Flynn K, Thomas S, Schmitt LC. Self-reported fear predicts functional performance and second ACL injury after ACL reconstruction and return to sport: a pilot study. Sports Health. 2018;10(3):228–33.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    DiSanti J, Lisee C, Erickson K, Bell D, Shingles M, Kuenze C. Perceptions of rehabilitation and return to sport among high school athletes with ACL reconstruction: a qualitative research study. J Orthop Sports Phys Ther. 2018;48(12):951–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Coronado RA, Bird ML, Van Hoy EE, Huston LJ, Spindler KP, Archer KR. Do psychosocial interventions improve rehabilitation outcomes after anterior cruciate ligament reconstruction? A systematic review. Clin Rehabil. 2018;32(3):287–98.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hallquist C, Fitzgerald UT, Alricsson M. Responsibility for child and adolescent’s psychosocial support associated with severe sports injuries. J Exerc Rehabil. 2016;12(6):589–97.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Trentacosta NE, Vitale MA, Ahmad CS. The effects of timing of pediatric knee ligament surgery on short-term academic performance in school-aged athletes. Am J Sports Med. 2009;37(9):1684–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Dekker TJ, Godin JA, Dale KM, Garrett WE, Taylor DC, Riboh JC. Return to sport after Pediatric anterior cruciate ligament reconstruction and its effect on subsequent anterior cruciate ligament injury. J Bone Joint Surg Am. 2017;99(11):897–904.CrossRefGoogle Scholar
  45. 45.
    Kay J, Memon M, Marx RG, Peterson D, Simunovic N, Ayeni OR. Over 90% of children and adolescents return to sport after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2018;26(4):1019–36.CrossRefGoogle Scholar
  46. 46.
    Geffroy L, Lefevre N, Thevenin-Lemoine C, et al. Return to sport and re-tears after anterior cruciate ligament reconstruction in children and adolescents. Orthop Traumatol Surg Res. 2018;104(8S):S183–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Webster KE, Feller JA, Leigh WB, Richmond AK. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(3):641–7.CrossRefGoogle Scholar
  48. 48.
    Chicorelli AM, Micheli LJ, Kelly M, Zurakowski D, MacDougall R. Return to sport after anterior cruciate ligament reconstruction in the skeletally immature athlete. Clin J Sport Med. 2016;26(4):266–71.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Christino MA, Tepolt FA, Sugimoto D, Micheli LJ, Kocher MS. Revision ACL reconstruction in children and adolescents. J Pediatr Orthop. 2018;
  50. 50.
    Shea KG, Belzer J, Apel PJ, Nilsson K, Grimm NL, Pfeiffer RP. Volumetric injury of the physis during single-bundle anterior cruciate ligament reconstruction in children: a 3-dimensional study using magnetic resonance imaging. Arthroscopy. 2009;25(12):1415–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Chotel F, Henry J, Seil R, Chouteau J, Moyen B, Berard J. Growth disturbances without growth arrest after ACL reconstruction in children. Knee Surg Sports Traumatol Arthrosc. 2010;18(11):1496–500.PubMedCrossRefGoogle Scholar
  52. 52.
    Frosch KH, Stengel D, Brodhun T, et al. Outcomes and risks of operative treatment of rupture of the anterior cruciate ligament in children and adolescents. Arthroscopy. 2010;26(11):1539–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Huleatt J, Gottschalk M, Fraser K, et al. Risk factors for manipulation under anesthesia and/or lysis of adhesions after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2018;6(9):2325967118794490.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bram JT, Gambone AJ, DeFrancesco CJ, Striano BM, Ganley TJ. Use of continuous passive motion reduces rates of arthrofibrosis after anterior cruciate ligament reconstruction in a pediatric population. Orthopedics. 2019;42(1):e81–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Fabricant PD, Tepolt FA, Kocher MS. Range of motion improvement following surgical management of knee arthrofibrosis in children and adolescents. J Pediatr Orthop. 2018;38(9):e495–500.PubMedCrossRefGoogle Scholar
  56. 56.
    Vander Have KL, Ganley TJ, Kocher MS, Price CT, Herrera-Soto JA. Arthrofibrosis after surgical fixation of tibial eminence fractures in children and adolescents. Am J Sports Med. 2010;38(2):298–301.PubMedCrossRefGoogle Scholar
  57. 57.
    Mandelbaum BR, Silvers HJ, Watanabe DS, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med. 2005;33(7):1003–10.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Beaudouin F, Rossler R, Aus der Funten K, et al. Effects of the ‘11+ Kids’ injury prevention programme on severe injuries in children’s football: a secondary analysis of data from a multicentre cluster-randomised controlled trial. Br J Sports Med. 2018; Scholar
  59. 59.
    Rossler R, Junge A, Bizzini M, et al. A multinational cluster randomised controlled trial to assess the efficacy of ‘11+ Kids’: a warm-up programme to prevent injuries in children’s football. Sports Med. 2018;48(6):1493–504.PubMedCrossRefGoogle Scholar
  60. 60.
    Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy. 2012;28(4):526–31.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Astur DC, Cachoeira CM, da Silva Vieira T, Debieux P, Kaleka CC, Cohen M. Increased incidence of anterior cruciate ligament revision surgery in paediatric verses adult population. Knee Surg Sports Traumatol Arthrosc. 2018;26(5):1362–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Sports Medicine, Department of OrthopedicsBoston Children’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.The Micheli Center for Sports Injury PreventionWalthamUSA

Personalised recommendations