Advertisement

Neurocognitive Testing

  • Katherine J. HunzingerEmail author
  • Charles Buz Swanik
Chapter

Abstract

Neurocognitive testing has garnered great attention in recent years as an assessment tool to prevent, screen, and/or identify individuals with executive function deficits as well as injury proneness. Neurocognitive assessment tools (NCATs) have been shown to recognize deficits in neurocognitive functions such as processing speeds, working memory, visual memory, and reaction times. These deficits may be linked to an inability to focus attention, generate appropriate movement commands, and minimize sensorimotor errors through feedback mechanisms. During physical activities, neuromuscular control intensifies the brain’s cognitive load. As a result, impaired or lower levels of neurocognitive functioning may lead to altered movement strategies, compromising musculoskeletal structures and increasing an individual’s risk for injury. As such, a wide variety of valid and reliable NCATs can be utilized as part of broader strategy in research and clinical practice as means to identify injury proneness or risk through computerized and portable testing. In addition to identifying injury proneness, neurocognitive testing may be utilized to track improvements in executive function, potentially lowering an individual’s risk for injury through heightened neurocognitive and sensorimotor function.

Keywords

Executive function Attentional resources Computerized testing Neuromuscular control Injury risk 

References

  1. 1.
    Farmer E, Chambers EG. A study of personal qualities in accident proneness and proficiency. Report 55. London: Industrial Health Research Board Report. H.M.S.O.; 1929.Google Scholar
  2. 2.
    Greenwood M, Woods HM. The incidence of industrial accidents upon individuals: With special reference to multiple accidents. 4. Industrial Fatigue Research Board. London: HM Stationery Office [Darling and Son, Limited, Printers]; 1919.Google Scholar
  3. 3.
    Hutchison M, Comper P, Mainwaring L, Richards D. The influence of musculoskeletal injury on cognition: implications for concussion research. Am J Sports Med. 2011;39(11):2331–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Herman DC, Zaremski JL, Vincent HK, Vincent KR. Effect of neurocognition and concussion on musculoskeletal injury risk. Curr Sports Med Rep. 2015;14(3):194–9.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Bauer RM, Iverson GL, Cernich AN, Binder LM, Ruff RM, Naugle RI. Computerized neuropsychological assessment devices: joint position paper of the American Academy of clinical neuropsychology and the National Academy of neuropsychology. Clin Neuropsychol. 2012;26(2):177–96.PubMedCrossRefGoogle Scholar
  6. 6.
    Cole WR, Arrieux JP, Schwab K, Ivins BJ, Qashu FM, Lewis SC. Test-retest reliability of four computerized neurocognitive assessment tools in an active duty military population. Arch Clin Neuropsychol. 2013;28(7):732–42.PubMedCrossRefGoogle Scholar
  7. 7.
    Nelson LD, LaRoche AA, Pfaller AY, Lerner EB, Hammeke TA, Randolph C, Barr WB, Guskiewicz K, McCrea MA. Prospective, head-to-head study of three computerized neurocognitive assessment tools (CNTs): reliability and validity for the assessment of sport-related concussion. J Int Neuropsychol Soc. 2016;22(1):24–37.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Covassin T, Elbin RJ, Nakayama Y. Tracking neurocognitive performance following concussion in high school athletes. Phys Sportsmed. 2010;38(4):87–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Guskiewicz KM, Bruce SL, Cantu RC, Ferrara MS, Kelly JP, McCrea M, Putukian M, McLeod T. National Athletic Trainers’ association position statement: management of sport-related concussion. J Athl Train. 2004;39(3):280–97.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Meehan WP, d’Hemecourt P, Collins CL, Taylor AM, Comstock RD. Computerized neurocognitive testing for the management of sport-related concussions. J Pediatr. 2012;129(1):38–44.CrossRefGoogle Scholar
  11. 11.
    Resch JE, McCrea MA, Cullum CM. Computerized neurocognitive testing in the management of sport-related concussion: an update. Neuropsychol Rev. 2013;23(4):335–49.PubMedCrossRefGoogle Scholar
  12. 12.
    Farnsworth JL 2nd, Dargo L, Ragan BG, Kang M. Reliability of computerized neurocognitive tests for concussion assessment: a meta-analysis. J Athl Train. 2017;52(9):826–33.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shappell SA, Wiegmann DA. A human error analysis of general aviation controlled flight into terrain accidents occurring between 1990–1998. (Report Number DOT/FAA/AM-03/4). Federal Aviation Administration. Washington DC: Office of Aerospace Medicine; 2003.Google Scholar
  14. 14.
    Xu J, Murphy SL, Kochanek KD, Bastian B, Arias E. Deaths: final data for 2016. Natl Vital Stat Rep. 2018;67(5):1–76.PubMedGoogle Scholar
  15. 15.
    Swanik CB. Brains and sprains: the Brain's role in noncontact anterior cruciate ligament injuries. J Athl Train. 2015;50(10):1100–2.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yasuda K, Erickson AR, Beynnon BD, Johnson RJ, Pope M. Dynamic elongation behavior in the medical collateral and anterior cruciate ligaments during lateral impact loading. J Orthop Res. 1993;11(2):190–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Boden BP, Torg JS, Knowles SB, Hewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med. 2009;37(2):252–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, Garrick JG, Hewett TE, Huston L, Ireland ML, Johnson RJ, Kibler WB, Lephart S, Lewis JL, Lindenfeld TN, Mandelbaum BR, Marchak P, Teitz CC, Wojtys EM. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–50.PubMedCrossRefGoogle Scholar
  19. 19.
    DeAngelis AI, Needle AR, Kaminski TW, Royer TR, Knight CA, Swanik CB. An acoustic startle alters knee joint stiffness and neuromuscular control. Scand J Med Sci Sports. 2015;25(4):509–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Fleming BC, Ohlen G, Renstrom PA, Peura GD, Beynnon BD, Badger GJ. The effects of compressive load and knee joint torque on peak anterior cruciate ligament strains. Am J Sports Med. 2003;31(5):701–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kirkendall DT, Garrett WE Jr. The anterior cruciate ligament enigma. Injury mechanisms and prevention. Clin Orthop. 2000;372:64–8.CrossRefGoogle Scholar
  22. 22.
    Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):1002–12.PubMedCrossRefGoogle Scholar
  23. 23.
    McNair PJ, Prapavessis H. Normative data of vertical ground reaction forces during landing from a jump. J Sci Med Sport. 1999;2(1):86–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Demont RG, Lephart SM, Giraldo JL, Swanik CB, Fu FH. Muscle Preactivity of anterior cruciate ligament-deficient and -reconstructed females during functional activities. J Athl Train. 1999;34(2):115–20.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Johansson H, Sjolander P, Sojka P. A sensory role for the cruciate ligaments. Clin Orthop Relat Res. 1991;268:161–78.Google Scholar
  26. 26.
    McClay Davis I, Ireland ML. ACL research retreat: the gender bias. April 6-7, 2001. Meeting report and abstracts. Clin Biomech (Bristol, Avon). 2001;16(10):937–59.CrossRefGoogle Scholar
  27. 27.
    Swanik CB, Lephart SM, Giannantonio FP, Fu FH. Reestablishing proprioception and neuromuscular control in the ACL-injured athlete. J Sport Rehabil. 1997;6:182–206.CrossRefGoogle Scholar
  28. 28.
    Swanik CB, Lephart SM, Giraldo JL, Demont RG, Fu FH. Reactive muscle firing of anterior cruciate ligament-injured females during functional activities. J Athl Train. 1999;34(2):121–9.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kiesel KB, Butler RJ, Plisky PJ. Prediction of injury by limited and asymmetrical fundamental movement patterns in american football players. J Sport Rehabil. 2014;23(2):88–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Pietrosimone B, Golightly YM, Mihalik JP, Guskiewicz KM. Concussion frequency associates with musculoskeletal injury in retired NFL players. Med Sci Sports Exerc. 2015;47(11):2366–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Plisky PJ, Rauh MJ, Kaminski TW, Underwood FB. Star excursion balance test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther. 2006;36(12):911–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Iverson GL, Lovell MR, Collins MW. Interpreting change on ImPACT following sport concussion. Clin Neuropsychol. 2003;17(4):460–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Nigg BM, Liu W. The effect of muscle stiffness and damping on simulated impact force peaks during running. J Biomech. 1999;32(8):849–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Lephart SC, Perrin DH, Fu FH, Gieck JH, McCue FC III., Irrgang JJ. Relationship between selected physical characteristics and functional capacity in the anterior cruciate ligament-insufficient athlete. J Orthop Sports Phys Ther. 1992;16(4):174–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Kim AS, Needle AR, Thomas SJ, Higginson CI, Kaminski TW, Swanik CB. A sex comparison of reactive knee stiffness regulation strategies under cognitive loads. Clin Biomech (Bristol, Avon). 2016;35:86–92.CrossRefGoogle Scholar
  36. 36.
    Wojtys EM, Huston LJ, Schock HJ, Boylan JP, Ashton-Miller JA. Gender differences in muscular protection of the knee in torsion in size-matched athletes. J Bone Joint Surg Am. 2003;85-A(5):782–9.CrossRefGoogle Scholar
  37. 37.
    Markolf KL, Graff-Radford A, Amstutz HC. In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am. 1978;60(5):664–74.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Swanik CB, Lephart SM, Swanik KA, Stone DA, Fu FH. Neuromuscular dynamic restraint in women with anterior cruciate ligament injuries. Clin Orthop Relat Res. 2004;(425):189–99.CrossRefGoogle Scholar
  39. 39.
    Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943–8.CrossRefGoogle Scholar
  40. 40.
    Adam JJ, Paas FG, Buekers MJ, Wuyts IJ, Spijkers WA, Wallmeyer P. Gender differences in choice reaction time: evidence for differential strategies. Ergonomics. 1999;42(2):327–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Jones RN, Gallo JJ. Education and sex differences in the mini-mental state examination: effects of differential item functioning. J Gerontol B Psychol Sci Soc Sci. 2002;57(6):P548–58.PubMedCrossRefGoogle Scholar
  42. 42.
    Davis M. The mammalian startle response. In: Eaton RC, editor. Neural mechanisms of startle behavior. New York: Plenum; 1984. p. 287–351.CrossRefGoogle Scholar
  43. 43.
    Koch M. The neurobiology of startle. Prog Neurobiol. 1999;59(2):107–28.PubMedCrossRefGoogle Scholar
  44. 44.
    Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med. 2013;41(7):1549–58.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gobbi A, Bathan L, Boldrini L. Primary repair combined with bone marrow stimulation in acute anterior cruciate ligament lesions: results in a group of athletes. Am J Sports Med. 2009;37(3):571–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee DY, Karim SA, Chang HC. Return to sports after anterior cruciate ligament reconstruction - a review of patients with minimum 5-year follow-up. Ann Acad Med Singap. 2008;37(4):273–8.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Chmielewski TL, Jones D, Day T, Tillman SM, Lentz TA, George SZ. The association of pain and fear of movement/reinjury with function during anterior cruciate ligament reconstruction rehabilitation. J Orthop Sports Phys Ther. 2008;38(12):746–53.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Amaral DG. The functional organization of perception and movement. In: Kandel ER, Schwartz JH, Jessell JM, Siegelbaum SA, Hudspeth AJ, Mack S, editors. Principles of neural science. 5th ed. New York: McGraw-Hill; 2013. p. 356–69.Google Scholar
  49. 49.
    Amaral DG, Strick PL. The organization of the central nervous system. In: Kandel ER, Schwartz JH, Jessell JM, Siegelbaum SA, Hudspeth AJ, Mack S, editors. Principles of neural science. 5th ed. New York: McGraw-Hill; 2013. p. 337–55.Google Scholar
  50. 50.
    An YW (2016) Neuromechanical links between cognition, fear and joint instability. (Unpublished doctoral dissertation) University of Delaware, Newark, DE.Google Scholar
  51. 51.
    Lentz TA, Zeppieri G Jr, George SZ, Tillman SM, Moser MW, Farmer KW, Chmielewski TL. Comparison of physical impairment, functional, and psychosocial measures based on fear of reinjury/lack of confidence and return-to-sport status after ACL reconstruction. Am J Sports Med. 2015;43(2):345–53.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Riemann BL, Lephart SM. The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. J Athl Train. 2002;37(1):80.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Medeiros-Ward N, Watson JM, Strayer DL. On supertaskers and the neural basis of efficient multitasking. Psychon Bull Rev. 2015;22(3):876–83.PubMedCrossRefGoogle Scholar
  54. 54.
    An YW, DiTrani Lobacz A, Lehmann T, Baumeister J, Rose WC, Higginson JS, Rosen J, Swanik CB. Neuroplastic changes in anterior cruciate ligament reconstruction patients from neuromechanical decoupling. Scand J Med Sci Sports. 2019;29(2): 251–8.  https://doi.org/10.1111/sms.13322. Epub 2018 Nov 7.CrossRefGoogle Scholar
  55. 55.
    Lathan C, Spira JL, Bleiberg J, Vice J, Tsao JW. Defense automated neurobehavioral assessment (DANA)-psychometric properties of a new field-deployable neurocognitive assessment tool. Mil Med. 2013;178(4):365–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Russo CR, Lathan CE. An evaluation of the consistency and reliability of the defense automated neurocognitive assessment tool. Appl Psychol Meas. 2015;39(7):566–72.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    De Marco AP, Broshek DK. Computerized cognitive testing in the Management of Youth Sports-Related Concussion. J Child Neurol. 2016;31(1):68–75.PubMedCrossRefGoogle Scholar
  58. 58.
    Howell DR, Lynall RC, Buckley TA, Herman DC. Neuromuscular control deficits and the risk of subsequent injury after a concussion: a scoping review. Sports Med (Auckland, NZ). 2018;48(5):1097–115.CrossRefGoogle Scholar
  59. 59.
    Collie A, Darby D, Maruff P. Computerised cognitive assessment of athletes with sports related head injury. Br J Sports Med. 2001;35(5):297–302.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Broglio SP, Katz BP, Zhao S, McCrea M, McAllister T. Test-retest reliability and interpretation of common concussion assessment tools: findings from the NCAA-DoD CARE consortium. Sports Med (Auckland, NZ). 2018;48(5):1255–68.CrossRefGoogle Scholar
  61. 61.
    Iverson G, Franzen M, Lovell M, Collins M. Construct validity of ImPACT in athletes with concussions. Arch Clin Neuropsychol. 2004;19(7):961–2.Google Scholar
  62. 62.
    Lichtenstein JD, Moser RS, Schatz P. Age and test setting affect the prevalence of invalid baseline scores on neurocognitive tests. Am J Sports Med. 2014;42(2):479–84.PubMedCrossRefGoogle Scholar
  63. 63.
    McClure DJ, Zuckerman SL, Kutscher SJ, Gregory AJ, Solomon GS. Baseline neurocognitive testing in sports-related concussions: the importance of a prior night’s sleep. Am J Sports Med. 2014;42(2):472–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Nakayama Y, Covassin T, Schatz P, Nogle S, Kovan J. Examination of the test-retest reliability of a computerized neurocognitive test battery. Am J Sports Med. 2014;42(8):2000–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Moser RS, Schatz P, Neidzwski K, Ott SD. Group versus individual administration affects baseline neurocognitive test performance. Am J Sports Med. 2011;39(11):2325–30.PubMedCrossRefGoogle Scholar
  66. 66.
    Vincent AS, Roebuck-Spencer T, Gilliland K, Schlegel R. Automated neuropsychological assessment metrics (v4) traumatic brain injury battery: military normative data. Mil Med. 2012;177(3):256–69.PubMedCrossRefGoogle Scholar
  67. 67.
    Cernich A, Reeves D, Sun W, Bleiberg J. Automated neuropsychological assessment metrics sports medicine battery. Arch Clin Neuropsychol. 2007;22(Suppl 1):S101–14.PubMedCrossRefGoogle Scholar
  68. 68.
    Cole WR, Arrieux JP, Dennison EM, Ivins BJ. The impact of administration order in studies of computerized neurocognitive assessment tools (NCATs). J Clin Exp Neuropsychol. 2017;39(1):35–45.PubMedCrossRefGoogle Scholar
  69. 69.
    Segalowitz SJ, Mahaney P, Santesso DL, MacGregor L, Dywan J, Willer B. Retest reliability in adolescents of a computerized neuropsychological battery used to assess recovery from concussion. Neuro Rehabilitation. 2007;22(3):243–51.PubMedGoogle Scholar
  70. 70.
    Westerman R, Darby DG, Maruff P, Collie A. Computer-assisted cognitive function assessment of pilots. ADF Health. 2001;2:29–36.Google Scholar
  71. 71.
    Collie A, Maruff P, Makdissi M, McCrory P, McStephen M, Darby D. CogSport: reliability and correlation with conventional cognitive tests used in postconcussion medical evaluations. Clin J Sport Med. 2003;13(1):28–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Arrieux JP, Cole WR, Ahrens AP. A review of the validity of computerized neurocognitive assessment tools in mild traumatic brain injury assessment. Concussion (London, England). 2017;2(1):Cnc31.Google Scholar
  73. 73.
    Haran FJ, Dretsch MN, Bleiberg J. Performance on the Defense automated neurobehavioral assessment across controlled environmental conditions. Appl Neuropsychol Adult. 2016;23(6):411–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Weintraub S, Dikmen SS, Heaton RK, Tulsky DS, Zelazo PD, Bauer PJ, Carlozzi NE, Slotkin J, Blitz D, Wallner-Allen K, Fox NA, Beaumont JL, Mungas D, Nowinski CJ, Richler J, Deocampo JA, Anderson JE, Manly JJ, Borosh B, Havlik R, Conway K, Edwards E, Freund L, King JW, Moy C, Witt E, Gershon RC. Cognition assessment using the NIH toolbox. Neurology. 2013;80(11 Suppl 3):S54–64.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Weintraub S, Dikmen SS, Heaton RK, Tulsky DS, Zelazo PD, Slotkin J, Carlozzi NE, Bauer PJ, Wallner-Allen K, Fox N, Havlik R, Beaumont JL, Mungas D, Manly JJ, Moy C, Conway K, Edwards E, Nowinski CJ, Gershon R. The cognition battery of the NIH toolbox for assessment of neurological and behavioral function: validation in an adult sample. J Int Neuropsychol Soc. 2014;20(6):567–78.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Buckley RF, Sparks KP, Papp KV, Dekhtyar M, Martin C, Burnham S, Sperling RA, Rentz DM. Computerized cognitive testing for use in clinical trials: a comparison of the NIH toolbox and cogstate C3 batteries. J Prev Alzheimer’s Dis. 2017;4(1):3–11.Google Scholar
  77. 77.
    Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42(2):311–9.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Hootman JM, Albohm MJ. Anterior cruciate ligament injury prevention and primary prevention of knee osteoarthritis. J Athl Train. 2012;47(5):589–90.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Gyurak A, Goodkind MS, Kramer JH, Miller BL, Levenson RW. Executive functions and the down-regulation and up-regulation of emotion. J Cognition Emotion. 2012;26(1):103–18.CrossRefGoogle Scholar
  80. 80.
    Beard DJ, Dodd CAF, Trundle HR, Simpson AHRW. Proprioception enhancement for anterior cruciate ligament deficiency. A prospective randomised trial of two physiotherapy regimes. J Bone Joint Surg. 1994;76B(4):654–9.CrossRefGoogle Scholar
  81. 81.
    Fitzgerald GK, Axe MJ, Snyder-Mackler L. A decision-making scheme for returning patients to high-level activity with nonoperative treatment after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc. 2000;8(2):76–82.CrossRefGoogle Scholar
  82. 82.
    Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999;27(6):699–706.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Risberg MA, Holm I, Myklebust G, Engebretsen L. Neuromuscular training versus strength training during first 6 months after anterior cruciate ligament reconstruction: a randomized clinical trial. Phys Ther. 2007;87(6):737–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Risberg MA, Holm I. The long-term effect of 2 postoperative rehabilitation programs after anterior cruciate ligament reconstruction: a randomized controlled clinical trial with 2 years of follow-up. Am J Sports Med. 2009;37(10):1958–66.PubMedCrossRefGoogle Scholar
  85. 85.
    Mahan AL, Ressler KJ. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci. 2012;35(1):24–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katherine J. Hunzinger
    • 1
    • 2
    Email author
  • Charles Buz Swanik
    • 1
    • 2
  1. 1.Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkUSA
  2. 2.Interdisciplinary Program in Biomechanics and Movement ScienceUniversity of DelawareNewarkUSA

Personalised recommendations