Neuroscience Principles for ACL Rehabilitation and Reinjury Risk Reduction

  • James Onate
  • Daniel Herman
  • Dustin Grooms
  • Zach Sutton
  • Gary WilkersonEmail author


The study of combined biomechanical and neurological approaches to anterior cruciate ligament (ACL) injury rehabilitation is a relevantly new area of research and clinical implementation. The classical view of orthopedic-focused ACL rehabilitation has been to treat the local knee joint and proximal hip and core structures to create improved stability and mobility for enhanced joint control. This approach has led to a predominately biomechanical centric focus on ACL rehabilitation that has yielded immense strides in understanding the mechanics associated with injury, yet ACL reinjury rates still remain high. The inability of current biomechanically focused interventions to fully optimize movement is readily apparent when athletes engage in cognitively challenging and sensory rich sport environments, because the rate of motor coordination errors increases under these complex field-based conditions. In this chapter, an overview is provided for the foundation of neuroscience integration into musculoskeletal rehabilitation. The initial overview begins with the association of neuromuscular control/injury and musculoskeletal knee injury. Next, we review the current status of neurocognitive and neurophysiological influences on ACL injury mechanism and its implication for movement control. Novel neurocognitive training approaches utilizing visual-motor function, multi-task paradigms, and sport specific neuroloading will be explored to provide sports medicine clinicians with advanced integrative practical knowledge to formulate new techniques for ACL rehabilitation and injury prevention plans.


Neurocognitive Neuromuscular Visual-Motor Prevention Rehabilitation 


  1. 1.
    Gottlob CA, Baker CL Jr. Anterior cruciate ligament reconstruction: socioeconomic issues and cost effectiveness. Am J Orthop. 2000;29(6):472–6.PubMedGoogle Scholar
  2. 2.
    Gottlob CA, Baker CL Jr, Pellissier JM, Colvin L. Cost effectiveness of anterior cruciate ligament reconstruction in young adults. Clin Orthop Relat Res. 1999;367:272-282.CrossRefGoogle Scholar
  3. 3.
    Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear. N Engl J Med. 2008;359(20):2135–42.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Grindstaff TL, Hammill RR, Tuzson AE, Hertel J. Neuromuscular control training programs and noncontact anterior cruciate ligament injury rates in female athletes: a numbers-needed-to-treat analysis. J Athl Train. 2006;41(4):450–6.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Yoo JH, Lim BO, Ha M, et al. A meta-analysis of the effect of neuromuscular training on the prevention of the anterior cruciate ligament injury in female athletes. Knee Surg Sports Traumatol Arthrosc. 2010;18(6):824–30.CrossRefGoogle Scholar
  6. 6.
    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med. 2012;22(2):116–21.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–78.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy. 2005;21(8):948–57.PubMedCrossRefGoogle Scholar
  9. 9.
    Reinecke K, Cordes M, Lerch C, et al. From lab to field conditions: a pilot study on EEG methodology in applied sports sciences. Appl Psychophysiol Biofeedback. 2011;36(4):265–71.PubMedCrossRefGoogle Scholar
  10. 10.
    DiStefano LJ, Blackburn JT, Marshall SW, Guskiewicz KM, Garrett WE, Padua DA. Effects of an age-specific anterior cruciate ligament injury prevention program on lower extremity biomechanics in children. Am J Sports Med. 2011;39(5):949–57.PubMedCrossRefGoogle Scholar
  11. 11.
    Heidt RS Jr, Sweeterman LM, Carlonas RL, Traub JA, Tekulve FX. Avoidance of soccer injuries with preseason conditioning. Am J Sports Med. 2000;28(5):659–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Herman DC, Weinhold PS, Guskiewicz KM, Garrett WE, Yu B, Padua DA. The effects of strength training on the lower extremity biomechanics of female recreational athletes during a stop-jump task. Am J Sports Med. 2008;36(4):733–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Hewett TE, Ford KR, Hoogenboom BJ, Myer GD. Understanding and preventing ACL injuries: current biomechanical and epidemiologic considerations - update 2010. NAJSPT. 2010;5(4):234–51.PubMedGoogle Scholar
  14. 14.
    Steffen K, Myklebust G, Olsen OE, Holme I, Bahr R. Preventing injuries in female youth football--a cluster-randomized controlled trial. Scand J Med Sci Sports. 2008;18(5):605–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Myer GD, Ford KR, Palumbo JP, Hewett TE. Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J Strength Cond Res. 2005;19(1):51–60.PubMedGoogle Scholar
  16. 16.
    Myer GD, Paterno MV, Ford KR, Hewett TE. Neuromuscular training techniques to target deficits before return to sport after anterior cruciate ligament reconstruction. J Strength Cond Res. 2008;22(3):987–1014.PubMedCrossRefGoogle Scholar
  17. 17.
    Goerger BM, Marshall SW, Beutler AI, Blackburn JT, Wilckens JH, Padua DA. ACL injury alters pre-injury coordination of the hip and knee: the JUMP ACL study. Med Sci Sports Exerc. 2013;45(5):221.Google Scholar
  18. 18.
    McLean SG. The ACL injury enigma: we can’t prevent what we don’t understand. J Athl Train. 2008;43(5):538–40.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Baumeister J, Reinecke K, Schubert M, Weiss M. Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res. 2011;29(9):1383–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Baumeister J. What the brain can tell us in musculoskeletal rehabilitation. J Sports Med Doping Stud. 2012;2(3):1–2.CrossRefGoogle Scholar
  21. 21.
    Beck S, Taube W, Gruber M, Amtage F, Gollhofer A, Schubert M. Task-specific changes in motor evoked potentials of lower limb muscles after different training interventions. Brain Res. 2007;1179:51–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Benjaminse A, Otten E. ACL injury prevention, more effective with a different way of motor learning? Knee Surg Sports Traumatol Arthrosc. 2011;19(4):622–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Berthoz A, Lacour M, Soechting J, Vidal P. The role of vision in the control of posture during linear motion. Prog Brain Res. 1979;50:197–209.PubMedCrossRefGoogle Scholar
  24. 24.
    Valeriani M, Restuccia D, Di Lazzaro V, Franceschi F, Fabbriciani C, Tonali P. Clinical and neurophysiological abnormalities before and after reconstruction of the anterior cruciate ligament of the knee. Acta Neurol Scand. 1999;99(5):303–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Baumeister J, Reinecke K, Liesen H, Weiss M. Cortical activity of skilled performance in a complex sports related motor task. Eur J Appl Physiol. 2008;104(4):625–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Hall KG, Magill RA. Variability of practice and contextual interference in motor skill learning. J Mot Behav. 1995;27(4):299–309.PubMedCrossRefGoogle Scholar
  27. 27.
    Kirkendall DT, Garrett WE Jr. The anterior cruciate ligament enigma. Injury mechanisms and prevention. Clin Orthop Relat Res. 2000;372:64–8.CrossRefGoogle Scholar
  28. 28.
    Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):1002–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–50.PubMedCrossRefGoogle Scholar
  30. 30.
    McNair PJ, Marshall RN, Matheson JA. Important features associated with acute anterior cruciate ligament injury. N Z Med J. 1990;103(901):537–9.PubMedGoogle Scholar
  31. 31.
    Shimokochi Y, Shultz SJ. Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train. 2008;43(4):396–408.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Boden BP, Torg JS, Knowles SB, Hewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med. 2009;37(2):252–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43(6):417–22.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Koga H, Nakamae A, Shima Y, et al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med. 2010;38(11):2218–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball - video analysis of 39 cases. Am J Sports Med. 2007;35(3):359–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Hewett TE, Zazulak BT, Myer GD. Effects of the menstrual cycle on anterior cruciate ligament injury risk: a systematic review. Am J Sports Med. 2007;35(4):659–68.PubMedCrossRefGoogle Scholar
  37. 37.
    Ruedl G, Ploner P, Linortner I, et al. Are oral contraceptive use and menstrual cycle phase related to anterior cruciate ligament injury risk in female recreational skiers? Knee Surg Sports Traumatol Arthrosc. 2009;17(9):1065–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: Summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42(2):311–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: a 10-year study. Knee. 2006;13(3):184–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Chaudhari AM, Zelman EA, Flanigan DC, Kaeding CC, Nagaraja HN. Anterior cruciate ligament-injured subjects have smaller anterior cruciate ligaments than matched controls: a magnetic resonance imaging study. Am J Sports Med. 2009;37(7):1282–7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Everhart JS, Flanigan DC, Simon RA, Chaudhari AM. Association of noncontact anterior cruciate ligament injury with presence and thickness of a bony ridge on the anteromedial aspect of the femoral intercondylar notch. Am J Sports Med. 2010;38(8):1667–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Jamison ST, Flanigan DC, Nagaraja HN, Chaudhari AM. Side-to-side differences in anterior cruciate ligament volume in healthy control subjects. J Biomech. 2010;43(3):576–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM. A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech. 2010;43(9):1702–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hewett TE, Lynch TR, Myer GD, Ford KR, Gwin RC, Heidt RS Jr. Multiple risk factors related to familial predisposition to anterior cruciate ligament injury: fraternal twin sisters with anterior cruciate ligament ruptures. Br J Sports Med. 2010;44(12):848–55.PubMedCrossRefGoogle Scholar
  45. 45.
    Posthumus M, Collins M, van der Merwe L, et al. Matrix metalloproteinase genes on chromosome 11q22 and the risk of anterior cruciate ligament (ACL) rupture. Scand J Med Sci Sports. 2012;22(4):523–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Raleigh SM, Posthumus M, O'Cuinneagain D, van der Merwe W, Collins M. The GDF5 gene and anterior cruciate ligament rupture. Int J Sports Med. 2013;34(4):364–7.PubMedGoogle Scholar
  47. 47.
    Greska EK, Cortes N, Van Lunen BL, Onate JA. A feedback inclusive neuromuscular training program alters frontal plane kinematics. J Strength Cond Res. 2011;26(6):1609–19.CrossRefGoogle Scholar
  48. 48.
    McCann R, Nelson C, Van Lunen B, Greska E, Ringleb S, Onate J. Neuromuscular changes following an injury prevention program for ACL injuries. Int J Athl Ther Train. 2011;14(4):16–20.Google Scholar
  49. 49.
    Noyes FR, Barber-Westin SD, Smith ST, Campbell T. A training program to improve neuromuscular indices in female high school volleyball players. J Strength Cond Res. 2011;25(8):2151–60.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pollard CD, Sigward SM, Powers CM. Injury prevention training results in biomechanical changes consistent with decreased knee loading in female athletes during landing. Knee. 2009;4:5.Google Scholar
  51. 51.
    Zemkova E, Hamar D. The effect of 6-week combined agility-balance training on neuromuscular performance in basketball players. J Sports Med Phys Fitness. 2010;50(3):262–7.PubMedGoogle Scholar
  52. 52.
    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009;19(1):3–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Padua DAMS, Beutler AI, Garrett WE. Prospective cohort study of biomechanical risk factors of ACL injury: The JUMP-ACL Study. American Orthopaedic Society of Sports Medicine Annual Meeting; 2009; Keystone.Google Scholar
  55. 55.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):1123–30.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hewett TE, Myer GD, Ford KR. Reducing knee and anterior cruciate ligament injuries among female athletes: a systematic review of neuromuscular training interventions. J Knee Surg. 2005;18(1):82–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005;15(2):161–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Grooms DR, Kiefer AW, Riley MA, et al. Brain-behavior mechanisms for the transfer of neuromuscular training adaptions to simulated sport: initial findings from the train the brain project. J Sport Rehabil. 2018;27(5):1–5. Scholar
  59. 59.
    Jensen JL, Marstrand PC, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol. 2005;99(4):1558–68.PubMedCrossRefGoogle Scholar
  60. 60.
    Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M. Role of the human motor cortex in rapid motor learning. Exp Brain Res. 2001;136(4):431–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Powers CM, Fisher B. Mechanisms underlying ACL injury-prevention training: the brain-behavior relationship. J Athl Train. 2010;45(5):513–5.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Schubert M, Beck S, Taube W, Amtage F, Faist M, Gruber M. Balance training and ballistic strength training are associated with task-specific corticospinal adaptations. Eur J Neurosci. 2008;27(8):2007–18.PubMedCrossRefGoogle Scholar
  63. 63.
    Ungerleider LG, Doyon J, Karni A. Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem. 2002;78(3):553–64.PubMedCrossRefGoogle Scholar
  64. 64.
    Gokeler A, Benjaminse A, Hewett TE, et al. Feedback techniques to target functional deficits following anterior cruciate ligament reconstruction: implications for motor control and reduction of second injury risk. Sports Med. 2013;43(11):1065–74.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Onate JA, Guskiewicz KM, Marshall SW, Giuliani C, Yu B, Garrett WE. Instruction of jump-landing technique using videotape feedback: altering lower extremity motion patterns. Am J Sports Med. 2005;33(6):831–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Padua DA, DiStefano LJ, Marshall SW, Beutler AI, de la Motte SJ, DiStefano MJ. Retention of movement pattern changes after a lower extremity injury prevention program is affected by program duration. Am J Sports Med. 2012;40(2):300–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Emanuel M, Jarus T, Bart O. Effect of focus of attention and age on motor acquisition, retention, and transfer: a randomized trial. Phys Ther. 2008;88(2):251–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Herman DC, Onate JA, Weinhold PS, et al. The effects of feedback with and without strength training on lower extremity biomechanics. Am J Sports Med. 2009;37(7):1301–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Onate JA, Guskiewicz KM, Sullivan RJ. Augmented feedback reduces jump landing forces. J Orthop Sports Phys Ther. 2001;31(9):511–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Seidler RD, Noll DC. Neuroanatomical correlates of motor acquisition and motor transfer. J Neurophysiol. 2008;99(4):1836–45.PubMedCrossRefGoogle Scholar
  71. 71.
    Wood CA, Ging CA. The role of interference and task similarity on the acquisition, retention, and transfer of simple motor skills. Res Q Exerc Sport. 1991;62(1):18–26.PubMedCrossRefGoogle Scholar
  72. 72.
    Grandstrand SL, Pfeiffer RP, Sabick MB, DeBeliso M, Shea KG. The effects of a commercially available warm-up program on landing mechanics in female youth soccer players. J Strength Cond Res. 2006;20(2):331–5.PubMedGoogle Scholar
  73. 73.
    Pfeiffer RP, Shea KG, Roberts D, Grandstrand S, Bond L. Lack of effect of a knee ligament injury prevention program on the incidence of noncontact anterior cruciate ligament injury. J Bone Joint Surg. 2006;88(8):1769–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Soderman K, Werner S, Pietila T, Engstrom B, Alfredson H. Balance board training: prevention of traumatic injuries of the lower extremities in female soccer players? A prospective randomized intervention study. Knee Surg Sports Traumatol Arthrosc. 2000;8(6):356–63.PubMedCrossRefGoogle Scholar
  75. 75.
    Gardinier ES, Di Stasi S, Manal K, Buchanan TS, Snyder-Mackler L. Knee contact force asymmetries in patients who failed return-to-sport readiness criteria 6 months after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(12):2917–25.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Larsen JB, Farup J, Lind M, Dalgas U. Muscle strength and functional performance is markedly impaired at the recommended time point for sport return after anterior cruciate ligament reconstruction in recreational athletes. Hum Mov Sci. 2015;39:73–87.PubMedCrossRefGoogle Scholar
  77. 77.
    Logerstedt D, Di Stasi S, Grindem H, et al. Self-reported knee function can identify athletes who fail return-to-activity criteria up to 1 year after anterior cruciate ligament reconstruction: a delaware-oslo ACL cohort study. J Orthop Sports Phys Ther. 2014;44(12):914–23.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Knoll Z, Kiss RM, Kocsis L. Gait adaptation in ACL deficient patients before and after anterior cruciate ligament reconstruction surgery. J Electromyogr Kinesiol. 2004;14(3):287–94.PubMedCrossRefGoogle Scholar
  79. 79.
    Myer GD, Martin L Jr, Ford KR, et al. No association of time from surgery with functional deficits in athletes after anterior cruciate ligament reconstruction: evidence for objective return-to-sport criteria. Am J Sports Med. 2012;40(10):2256–63.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Paterno MV, Ford KR, Myer GD, Heyl R, Hewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med. 2007;17(4):258–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Ageberg E, Friden T. Normalized motor function but impaired sensory function after unilateral non-reconstructed ACL injury: patients compared with uninjured controls. Knee Surg Sports Traumatol Arthrosc. 2008;16(5):449–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Friden T, Roberts D, Movin T, Wredmark T. Function after anterior cruciate ligament injuries - influence of visual control and proprioception. Acta Orthop Scand. 1998;69(6):590–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Roberts D, Ageberg E, Andersson G, Friden T. Clinical measurements of proprioception, muscle strength and laxity in relation to function in the ACL-injured knee. Knee Surg Sports Traumatol Arthrosc. 2007;15(1):9–16.PubMedCrossRefGoogle Scholar
  84. 84.
    Hertel J. Sensorimotor deficits with ankle sprains and chronic ankle instability. Clin Sports Med. 2008;27(3):353–70.PubMedCrossRefGoogle Scholar
  85. 85.
    Kandel ER, Schwartz JH, Jessell TM. Principles of neural science, vol. 4. New York: McGraw-Hill; 2000.Google Scholar
  86. 86.
    Lederman E. The fall of the postural-structural-biomechanical model in manual and physical therapies: exemplified by lower back pain. J Bodyw Mov Ther. 2011;15(2):131–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Magill RA. Motor learning and control: concepts and applications, vol. 11. New York: McGraw-Hill; 2007.Google Scholar
  88. 88.
    Winter DA. Biomechanics and motor control of human movement. Waterloo: Wiley; 2009.CrossRefGoogle Scholar
  89. 89.
    Gomez-Barrena E, Martinez-Moreno E, Munuera L. Segmental sensory innervation of the anterior cruciate ligament and the patellar tendon of the cat’s knee. Acta Orthop Scand. 1996;67(6):545–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Gomez-Barrena E, Nunez A, Martinez-Moreno E, Valls J, Munuera L. Neural and muscular electric activity in the cat’s knee. Changes when the anterior cruciate ligament is transected. Acta Orthop Scand. 1997;68(2):149–55.PubMedCrossRefGoogle Scholar
  91. 91.
    Park HB, Koh M, Cho SH, Hutchinson B, Lee B. Mapping the rat somatosensory pathway from the anterior cruciate ligament nerve endings to the cerebrum. J Orthop Res. 2005;23(6):1419–24.PubMedCrossRefGoogle Scholar
  92. 92.
    Adachi N, Ochi M, Uchio Y, Iwasa J, Ryoke K, Kuriwaka M. Mechanoreceptors in the anterior cruciate ligament contribute to the joint position sense. Acta Orthop. 2002;73(3):330–4.CrossRefGoogle Scholar
  93. 93.
    Fremerey RW, Lobenhoffer P, Zeichen J, Skutek M, Bosch U, Tscherne H. Proprioception after rehabilitation and reconstruction in knees with deficiency of the anterior cruciate ligament: a prospective, longitudinal study. J Bone Joint Surg. 2000;82(6):801–6.CrossRefGoogle Scholar
  94. 94.
    Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10(6):329–35.PubMedCrossRefGoogle Scholar
  95. 95.
    Schutte MJ, Dabezies EJ, Zimny ML, Happel LT. Neural anatomy of the human anterior cruciate ligament. J Bone Joint Surg. 1987;69(2):243–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Zimny ML, Schutte M, Dabezies E. Mechanoreceptors in the human anterior cruciate ligament. Anat Rec. 1986;214(2):204–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Santello M, McDonagh MJN, Challis JH. Visual and non-visual control of landing movements in humans. J Physiol. 2001;537(1):313–27.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Scheidt RA, Conditt MA, Secco EL, Mussa-Ivaldi FA. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements. J Neurophysiol. 2005;93(6):3200–13.PubMedCrossRefGoogle Scholar
  99. 99.
    Thompson HW, McKinley PA. Landing from a jump: the role of vision when landing from known and unknown heights. Neuroreport. 1995;6(3):581–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Wade MG, Jones G. The role of vision and spatial orientation in the maintenance of posture. Phys Ther. 1997;77(6):619–28.PubMedCrossRefGoogle Scholar
  101. 101.
    Baumeister J, Reinecke K, Weiss M. Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: an EEG study. Scand J Med Sci Sports. 2008;18(4):473–84.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Courtney C, Rine RM, Kroll P. Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture. 2005;22(1):69–74.PubMedCrossRefGoogle Scholar
  103. 103.
    Courtney CA, Rine RM. Central somatosensory changes associated with improved dynamic balance in subjects with anterior cruciate ligament deficiency. Gait Posture. 2006;24(2):190–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Ergen E, Ulkar B. Proprioception and ankle injuries in soccer. Clin Sports Med. 2008;27(1):195–217.PubMedCrossRefGoogle Scholar
  105. 105.
    Hopper DM, Creagh MJ, Formby PA, Goh SC, Boyle JJ, Strauss GR. Functional measurement of knee joint position sense after anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2003;84(6):868–72.PubMedCrossRefGoogle Scholar
  106. 106.
    Hopper DM, Strauss GR, Boyle JJ, Bell J. Functional recovery after anterior cruciate ligament reconstruction: a longitudinal perspective. Arch Phys Med Rehabil. 2008;89(8):1535–41.PubMedCrossRefGoogle Scholar
  107. 107.
    Kapreli E, Athanasopoulos S, Gliatis J, et al. Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med. 2009;37(12):2419–26.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Okuda K, Abe N, Katayama Y, Senda M, Kuroda T, Inoue H. Effect of vision on postural sway in anterior cruciate ligament injured knees. J Orthop Sci. 2005;10(3):277–83.PubMedCrossRefGoogle Scholar
  109. 109.
    Peuskens H, Vanrie J, Verfaillie K, Orban G. Specificity of regions processing biological motion. Eur J Neurosci. 2005;21(10):2864–75.PubMedCrossRefGoogle Scholar
  110. 110.
    Konishi YU. ACL repair might induce further abnormality of gamma loop in the intact side of the quadriceps femoris. Int J Sports Med. 2011;32(4):292–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Madhavan S, Shields RK. Neuromuscular responses in individuals with anterior cruciate ligament repair. Clin Neurophysiol. 2011;122(5):997–1004.PubMedCrossRefGoogle Scholar
  112. 112.
    Araújo D, Hristovski R, Seifert L, et al. Ecological cognition: expert decision-making behaviour in sport. Int Rev Sport Exerc Psychol. 2017;15:1–25.CrossRefGoogle Scholar
  113. 113.
    Barrett LF, Simmons WK. Interoceptive predictions in the brain. Nat Rev Neurosci. 2015;16(7):419–29.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Borotikar BS, Newcomer R, Koppes R, McLean SG. Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech. 2008;23(1):81–92.CrossRefGoogle Scholar
  115. 115.
    Farrow D, Abernethy B. Do expertise and the degree of perception—action coupling affect natural anticipatory performance? Perception. 2003;32(9):1127–39.PubMedCrossRefGoogle Scholar
  116. 116.
    Hadlow SMPD, Mann DL, Portus MR, Abernethy B. Modified perceptual training in sport: a new classification framework. J Sci Med Sport. 2018;21(9):950–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7):1271–88.PubMedCrossRefGoogle Scholar
  118. 118.
    Wilkerson GB, Grooms DR, Acocello SN. Neuromechanical considerations for postconcussion musculoskeletal injury risk management. Curr Sports Med Rep. 2017;16(6):419–27.PubMedCrossRefGoogle Scholar
  119. 119.
    Wahn B, König P. Is attentional resource allocation across sensory modalities task-dependent? Adv Cogn Psychol. 2017;13(1):83–96.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci. 2000;23(1):315–41.PubMedCrossRefGoogle Scholar
  121. 121.
    Pisella L. Visual perception is dependent on visuospatial working memory and thus on the posterior parietal cortex. Ann Phys Rehabil Med. 2017;60(3):141–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev Neurosci. 2011;12(12):739–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Pessoa L, Kastner S, Ungerleider LG. Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J Neurosci. 2003;23(10):3990–8.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Puglisi G, Leonetti A, Landau A, et al. The role of attention in human motor resonance. PLoS ONE. 2017;12(5):e0177457.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Taimela S, Kujala UM, Osterman K. The relation of low grade mental ability to fractures in young men. Int Orthop. 1991;15:75–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Taimela S, Osterman L, Kujala U, et al. Motor ability and personality with reference to soccer injuries. J Sports Med Phys Fitness. 1990;30:194–201.PubMedGoogle Scholar
  127. 127.
    Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Dai B, Cook RF, Meyer EA, Sciascia Y, Hinshaw TJ, Wang C, Zhu Q. The effect of a secondary cognitive task on landing mechanics and jump performance. Sports Biomech. 2018 Jun;17(2):192–205.PubMedCrossRefGoogle Scholar
  129. 129.
    Kim AS, Needle AR, Thomas SJ, Higginson CI, Kaminski TW, Swanik CB. A sex comparison of reactive knee stiffness regulation strategies under cognitive loads. Clin Biomech. 2016;35:86–92.CrossRefGoogle Scholar
  130. 130.
    Herman DC, Barth JT. Drop-jump landing varies with baseline neurocognition: implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med. 2016;44(9):2347–53.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    McLean SG, Borotikar B, Lucey SM. Lower limb muscle pre-motor time measures during a choice reaction task associate with knee abduction loads during dynamic single leg landings. Clin Biomech. 2010;25(6):563–9.CrossRefGoogle Scholar
  132. 132.
    An YW, DiTrani Lobacz A, Lehmann T, et al. Neuroplastic changes in ACLR patients from neuromechanical decoupling. Scand J Med Sci Sports. 2018;29:251–8. Scholar
  133. 133.
    Valeriani M, Restuccia D, Di Lazzaro V, Franceschi F, Fabbriciani C, Tonali P. Central nervous system modifications in patients with lesion of the anterior cruciate ligament of the knee. Brain. 1996;119(Pt 5):1751–62.PubMedCrossRefGoogle Scholar
  134. 134.
    Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sport Phys. 2017;47(3):180–9.CrossRefGoogle Scholar
  135. 135.
    Song K, Burcal CJ, Hertel J, Wikstrom EA. Increased visual use in chronic ankle instability: a meta-analysis. Med Sci Sports Exerc. 2016;48(10):2046–56.PubMedCrossRefGoogle Scholar
  136. 136.
    Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;45(5):381–93.CrossRefGoogle Scholar
  137. 137.
    Grooms DR, Page SJ, Onate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train. 2015;50(10):1005–10.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Churchill N, Hutchison MG, Leung G, et al. Changes in functional connectivity of the brain associated with a history of sport concussion: a preliminary investigation. Brain Inj. 2017;31(1):39–48.PubMedCrossRefGoogle Scholar
  139. 139.
    Parasuraman R, Jiang Y. Individual differences in cognition, affect, and performance: behavioral, neuroimaging, and molecular genetic approaches. NeuroImage. 2012;59(1):70–82.PubMedCrossRefGoogle Scholar
  140. 140.
    Serrien DJ, Ivry RB, Swinnen SP. The missing link between action and cognition. Prog Neurobiol. 2007;82(2):95–107.PubMedCrossRefGoogle Scholar
  141. 141.
    Taubert M, Draganski B, Anwander A, et al. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci. 2010;30(35):11670–7.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wu T, Liu J, Hallett M, et al. Cerebellum and integration of neural networks in dual-task processing. NeuroImage. 2013;65:466–75.PubMedCrossRefGoogle Scholar
  143. 143.
    Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14(6):277–90.PubMedCrossRefGoogle Scholar
  144. 144.
    Harris KD, Thiele A. Cortical state and attention. Nat Rev Neurosci. 2012;12(9):509–23.CrossRefGoogle Scholar
  145. 145.
    Heinen K, Feredoes E, Ruff CC, et al. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts. Neuropsychologia. 2017;99:81–91.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kahn AE, Mattar MG, Vettel JM, et al. Structural pathways supporting swift acquisition of new visuomotor skills. Cereb Cortex. 2017;27(1):173–84.PubMedCrossRefGoogle Scholar
  147. 147.
    Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Nat Acad Sci. 2008;105(34):12569–74.PubMedCrossRefGoogle Scholar
  148. 148.
    Weissman DH, Roberts K, Visscher K, et al. The neural bases of momentary lapses in attention. Nat Neurosci. 2006;9(7):971.PubMedCrossRefGoogle Scholar
  149. 149.
    Rémy F, Wenderoth N, Lipkens K, et al. Dual-task interference during initial learning of a new motor task results from competition for the same brain areas. Neuropsychologia. 2010;48(9):2517–27.PubMedCrossRefGoogle Scholar
  150. 150.
    Shuggi IM, Oh H, Shewokis PA, et al. Mental workload and motor performance dynamics during practice of reaching movements under various levels of task difficulty. Neuroscience. 2017;360:166–79.PubMedCrossRefGoogle Scholar
  151. 151.
    Nakata H, Yoshie M, Miura A, et al. Characteristics of the athletes’ brain: evidence from neurophysiology and neuroimaging. Brain Res Rev. 2010;62(2):197–211.PubMedCrossRefGoogle Scholar
  152. 152.
    Wilkerson GB, Nabhan DC, Prusmack CJ, et al. Detection of persisting concussion effects on neuromechanical responsiveness. Med Sci Sports Exerc. 2018;50(9):1750–6.PubMedCrossRefGoogle Scholar
  153. 153.
    Kapreli E, Athanasopoulos S. The anterior cruciate ligament deficiency as a model of brain plasticity. Med Hypotheses. 2006;67(3):645–50.PubMedCrossRefGoogle Scholar
  154. 154.
    Pitman MI, Nainzadeh N, Menche D, Gasalberti R, Song EK. The intraoperative evaluation of the neurosensory function of the anterior cruciate ligament in humans using somatosensory evoked potentials. Arthroscopy. 1992;8(4):442–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Brumagne S, Cordo P, Verschueren S. Proprioceptive weighting changes in persons with low back pain and elderly persons during upright standing. Neurosci Lett. 2004;366(1):63–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Im HJ, Kim JS, Li X, et al. Alteration of sensory neurons and spinal response to an experimental osteoarthritis pain model. Arthritis Rheum. 2010;62(10):2995–3005.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Levine JD, Dardick SJ, Basbaum AI, Scipio E. Reflex neurogenic inflammation. I. Contribution of the peripheral nervous system to spatially remote inflammatory responses that follow injury. J Neurosci. 1985;5(5):1380–6.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Myer GD, Schmitt LC, Brent JL, et al. Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther. 2011;41(6):377–87.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Roewer BD, Di Stasi SL, Snyder-Mackler L. Quadriceps strength and weight acceptance strategies continue to improve two years after anterior cruciate ligament reconstruction. J Biomech. 2011;44(10):1948–53.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Bates NA, Ford KR, Myer GD, Hewett TE. Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. J Biomech. 2013;46(7):1237–41.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Ernst GP, Saliba E, Diduch DR, Hurwitz SR, Ball DW. Lower extremity compensations following anterior cruciate ligament reconstruction. Phys Ther. 2000;80(3):251–60.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Courtney CA, Durr RK, Emerson-Kavchak AJ, Witte EO, Santos MJ. Heightened flexor withdrawal responses following ACL rupture are enhanced by passive tibial translation. Clin Neurophysiol. 2011;122(5):1005–10.PubMedCrossRefGoogle Scholar
  163. 163.
    Konishi Y, Fukubayashi T, Takeshita D. Possible mechanism of quadriceps femoris weakness in patients with ruptured anterior cruciate ligament. Med Sci Sports Exerc. 2002;34(9):1414–8.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Konishi Y, Konishi H, Fukubayashi T. Gamma loop dysfunction in quadriceps on the contralateral side in patients with ruptured ACL. Med Sci Sports Exerc. 2003;35(6):897–900.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Konishi Y, Aihara Y, Sakai M, Ogawa G, Fukubayashi T. Gamma loop dysfunction in the quadriceps femoris of patients who underwent anterior cruciate ligament reconstruction remains bilaterally. Scand J Med Sci Sports. 2007;17(4):393–9.PubMedGoogle Scholar
  166. 166.
    Di Fabio RP, Graf B, Badke MB, Breunig A, Jensen K. Effect of knee joint laxity on long-loop postural reflexes: evidence for a human capsular-hamstring reflex. Exp Brain Res. 1992;90(1):189–200.PubMedCrossRefGoogle Scholar
  167. 167.
    Boudreau SA, Farina D, Falla D. The role of motor learning and neuroplasticity in designing rehabilitation approaches for musculoskeletal pain disorders. Man Ther. 2010;15(5):410–4.PubMedCrossRefGoogle Scholar
  168. 168.
    Knecht S, Henningsen H, Elbert T, et al. Cortical reorganization in human amputees and mislocalization of painful stimuli to the phantom limb. Neurosci Lett. 1995;201(3):262–4.PubMedCrossRefGoogle Scholar
  169. 169.
    Torquati K, Pizzella V, Babiloni C, et al. Nociceptive and non-nociceptive sub-regions in the human secondary somatosensory cortex: an MEG study using fMRI constraints. NeuroImage. 2005;26(1):48–56.PubMedCrossRefGoogle Scholar
  170. 170.
    Grooms DR, Chaudhari A, Page SJ, Nichols-Larsen DS, Onate JA. Visual-motor control of drop landing after anterior cruciate ligament reconstruction. J Athl Train. 2018;53(5):486–96.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Grooms DR, Page SJ, Nichols-Larsen DS, et al. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017;47(3):180–9.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Biedert R, Zwick E. Ligament-muscle reflex arc after anterior cruciate ligament reconstruction: electromyographic evaluation. Arch Orthop Trauma Surg. 1998;118(1-2):81–4.PubMedCrossRefGoogle Scholar
  173. 173.
    Konishi Y, Fukubayashi T, Takeshita D. Mechanism of quadriceps femoris muscle weakness in patients with anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2002;12(6):371–5.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Roberts D, Friden T, Stomberg A, Lindstrand A, Moritz U. Bilateral proprioceptive defects in patients with a unilateral anterior cruciate ligament reconstruction: a comparison between patients and healthy individuals. J Orthop Res. 2000;18(4):565–71.PubMedCrossRefGoogle Scholar
  175. 175.
    Pietrosimone BG, Lepley AS, Ericksen HM, Gribble PA, Levine J. Quadriceps strength and corticospinal excitability as predictors of disability after anterior cruciate ligament reconstruction. J Sport Rehabil. 2013;22(1):1–6.PubMedCrossRefGoogle Scholar
  176. 176.
    Pietrosimone BG, McLeod MM, Lepley AS. A theoretical framework for understanding neuromuscular response to lower extremity joint injury. Sports Health. 2012;4(1):31–5.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Lepley AS, Bahhur NO, Murray AM, Pietrosimone BG. Quadriceps corticomotor excitability following an experimental knee joint effusion. Knee Surg Sports Traumatol Arthrosc. 2013;23(4):1010–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee. 2014;21(3):736–42.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Bonfim TR, Jansen Paccola CA, Barela JA. Proprioceptive and behavior impairments in individuals with anterior cruciate ligament reconstructed knees. Arch Phys Med Rehabil. 2003;84(8):1217–23.PubMedCrossRefGoogle Scholar
  180. 180.
    Friden T, Roberts D, Ageberg E, Walden M, Zatterstrom R. Review of knee proprioception and the relation to extremity function after an anterior cruciate ligament rupture. J Orthop Sports Phys Ther. 2001;31(10):567–76.PubMedCrossRefGoogle Scholar
  181. 181.
    Heroux ME, Tremblay F. Weight discrimination after anterior cruciate ligament injury: a pilot study. Arch Phys Med Rehabil. 2005;86(7):1362–8.PubMedCrossRefGoogle Scholar
  182. 182.
    Heroux ME, Tremblay F. Corticomotor excitability associated with unilateral knee dysfunction secondary to anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2006;14(9):823–33.PubMedCrossRefGoogle Scholar
  183. 183.
    Norte GE, Pietrosimone BG, Hart JM, Hertel J, Ingersoll CD. Relationship between transcranial magnetic stimulation and percutaneous electrical stimulation in determining the quadriceps central activation ratio. Am J Phys Med Rehabil. 2010;89(12):986–96.PubMedCrossRefGoogle Scholar
  184. 184.
    Hamzei F, Liepert J, Dettmers C, Weiller C, Rijntjes M. Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS. NeuroImage. 2006;31(2):710–20.PubMedCrossRefGoogle Scholar
  185. 185.
    On AY, Uludag B, Taskiran E, Ertekin C. Differential corticomotor control of a muscle adjacent to a painful joint. Neurorehabil Neural Repair. 2004;18(3):127–33.PubMedCrossRefGoogle Scholar
  186. 186.
    Tinazzi M, Rosso T, Zanette G, Fiaschi A, Aglioti SM. Rapid modulation of cortical proprioceptive activity induced by transient cutaneous deafferentation: neurophysiological evidence of short-term plasticity across different somatosensory modalities in humans. Eur J Neurosci. 2003;18(11):3053–60.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Zanette G, Manganotti P, Fiaschi A, Tamburin S. Modulation of motor cortex excitability after upper limb immobilization. Clin Neurophysiol. 2004;115(6):1264–75.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Ball T, Schreiber A, Feige B, Wagner M, Lucking CH, Kristeva-Feige R. The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. NeuroImage. 1999;10(6):682–94.PubMedCrossRefGoogle Scholar
  189. 189.
    Nachev P, Wydell H, O'Neill K, Husain M, Kennard C. The role of the pre-supplementary motor area in the control of action. NeuroImage. 2007;36(Suppl 2):T155–63.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Meister I, Krings T, Foltys H, et al. Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks: implications for cortical motor organization. Hum Brain Mapp. 2005;25(3):345–52.PubMedCrossRefGoogle Scholar
  191. 191.
    Chen TL, Babiloni C, Ferretti A, et al. Human secondary somatosensory cortex is involved in the processing of somatosensory rare stimuli: an fMRI study. NeuroImage. 2008;40(4):1765–71.PubMedCrossRefGoogle Scholar
  192. 192.
    Ferretti A, Babiloni C, Gratta CD, et al. Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study. NeuroImage. 2003;20(3):1625–38.PubMedCrossRefGoogle Scholar
  193. 193.
    Binder JR, Desai RH. The neurobiology of semantic memory. Trends Cogn Sci. 2011;15(11):527–36.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Bonner MF, Price AR. Where is the anterior temporal lobe and what does it do? J Neurosci. 2013;33(10):4213–5.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Smith WM, Bowen KF. The effects of delayed and displaced visual feedback on motor control. J Mot Behav. 1980;12(2):91–101.PubMedCrossRefGoogle Scholar
  196. 196.
    Warren WH Jr, Kay BA, Zosh WD, Duchon AP, Sahuc S. Optic flow is used to control human walking. Nat Neurosci. 2001;4(2):213–6.PubMedCrossRefGoogle Scholar
  197. 197.
    Amador N, Fried I. Single-neuron activity in the human supplementary motor area underlying preparation for action. J Neurosurg. 2004;100(2):250–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Dault MC, Frank JS, Allard F. Influence of a visuo-spatial, verbal and central executive working memory task on postural control. Gait Posture. 2001;14(2):110–6.PubMedCrossRefGoogle Scholar
  199. 199.
    Lajoie Y, Teasdale N, Bard C, Fleury M. Attentional demands for static and dynamic equilibrium. Exp Brain Res. 1993;97(1):139–44.PubMedCrossRefGoogle Scholar
  200. 200.
    Remaud A, Boyas S, Lajoie Y, Bilodeau M. Attentional focus influences postural control and reaction time performances only during challenging dual-task conditions in healthy young adults. Exp Brain Res. 2013;231(2):219–29.PubMedCrossRefGoogle Scholar
  201. 201.
    Wulf G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exer Psychol. 2013;6(1):77–104.CrossRefGoogle Scholar
  202. 202.
    Babiloni C, Marzano N, Infarinato F, et al. “Neural efficiency” of experts’ brain during judgment of actions: a high-resolution EEG study in elite and amateur karate athletes. Behav Brain Res. 2010;207(2):466–75.PubMedCrossRefGoogle Scholar
  203. 203.
    Del Percio C, Babiloni C, Marzano N, et al. “Neural efficiency” of athletes’ brain for upright standing: a high-resolution EEG study. Brain Res Bull. 2009;79(3-4):193–200.PubMedCrossRefGoogle Scholar
  204. 204.
    Ageberg E, Roberts D, Holmstrom E, Friden T. Balance in single-limb stance in patients with anterior cruciate ligament injury: relation to knee laxity, proprioception, muscle strength, and subjective function. Am J Sports Med. 2005;33(10):1527–35.PubMedCrossRefGoogle Scholar
  205. 205.
    Jarus T, Gutman T. Effects of cognitive processes and task complexity on acquisition, retention, and transfer of motor skills. Can J Occup Ther. 2001;68(5):280–9.PubMedCrossRefGoogle Scholar
  206. 206.
    Hart JM, Pietrosimone B, Hertel J, Ingersoll CD. Quadriceps activation following knee injuries: a systematic review. J Athl Train. 2010;45(1):87–97.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Grooms D, Simon JE, Onate JA; Athletic Trainers Osteoarthritis Consortium. Neuroplasticity and patient-reported outcomes after anterior cruciate ligament reconstruction. Ohio University Athletic Training. 2016.Google Scholar
  208. 208.
    Grooms DR, Myer GD. Upgraded hardware horizontal line What about the software? Brain updates for return to play following ACL reconstruction. Br J Sports Med. 2017;51(5):418–9.PubMedCrossRefGoogle Scholar
  209. 209.
    Grooms DR, Onate JA. Neuroscience application to noncontact anterior cruciate ligament injury prevention. Sports Health. 2015;8(2):149–52.PubMedCentralCrossRefPubMedGoogle Scholar
  210. 210.
    Roberts D, Friden T, Zatterstrom R, Lindstrand A, Moritz U. Proprioception in people with anterior cruciate ligament-deficient knees: comparison of symptomatic and asymptomatic patients. J Orthop Sports Phys Ther. 1999;29(10):587–94.PubMedCrossRefGoogle Scholar
  211. 211.
    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828–39.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA. Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6):665–74.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Houck JR, Wilding GE, Gupta R, De Haven KE, Maloney M. Analysis of EMG patterns of control subjects and subjects with ACL deficiency during an unanticipated walking cut task. Gait Posture. 2007;25(4):628–38.PubMedCrossRefGoogle Scholar
  214. 214.
    Negahban H, Ahmadi P, Salehi R, Mehravar M, Goharpey S. Attentional demands of postural control during single leg stance in patients with anterior cruciate ligament reconstruction. Neurosci Lett. 2013;556:118–23.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    O’Connell M, George K, Stock D. Postural sway and balance testing: a comparison of normal and anterior cruciate ligament deficient knees. Gait Posture. 1998;8(2):136–42.PubMedCrossRefGoogle Scholar
  216. 216.
    Hoffman M, Schrader J, Koceja D. An investigation of postural control in postoperative anterior cruciate ligament reconstruction patients. J Athl Train. 1999;34(2):130–6.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Mattacola CG, Perrin DH, Gansneder BM, Gieck JH, Saliba EN, McCue FC. Strength, functional outcome, and postural stability after anterior cruciate ligament reconstruction. J Athl Train. 2002;37(3):262–8.PubMedPubMedCentralGoogle Scholar
  218. 218.
    McLean SG, Neal RJ, Myers PT, Walters MR. Knee joint kinematics during the sidestep cutting maneuver: potential for injury in women. Med Sci Sports Exerc. 1999;31(7):959–68.PubMedCrossRefGoogle Scholar
  219. 219.
    McLean SG, Lipfert SW, van den Bogert AJ. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med Sci Sports Exerc. 2004;36(6):1008–16.PubMedCrossRefGoogle Scholar
  220. 220.
    Swanik CB, Lephart SM, Giraldo JL, DeMont RG, Fu FH. Reactive muscle firing of anterior cruciate ligament-injured females during functional activities. J Athl Train. 1999;34(2):121–9.PubMedPubMedCentralGoogle Scholar
  221. 221.
    Ford KR, Myer GD, Smith RL, Byrnes RN, Dopirak SE, Hewett TE. Use of an overhead goal alters vertical jump performance and biomechanics. J Strength Cond Res. 2005;19(2):394–9.PubMedGoogle Scholar
  222. 222.
    Wikstrom E, Tillman M, Schenker S, Borsa P. Failed jump landing trials: deficits in neuromuscular control. Scand J Med Sci Sports. 2008;18(1):55–61.PubMedCrossRefGoogle Scholar
  223. 223.
    Cortes N, Blount E, Ringleb S, Onate JA. Soccer-specific video simulation for improving movement assessment. Sports Biomech. 2011;10(1):22–34.PubMedCrossRefGoogle Scholar
  224. 224.
    McLean SG, Huang X, van den Bogert AJ. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech. 2005;20(8):863–70.CrossRefGoogle Scholar
  225. 225.
    Pollard CD, Heiderscheit BC, van Emmerik RE, Hamill J. Gender differences in lower extremity coupling variability during an unanticipated cutting maneuver. J Appl Biomech. 2005;21(2):143–52.PubMedCrossRefGoogle Scholar
  226. 226.
    Brown TN, Palmieri-Smith RM, McLean SG. Sex and limb differences in hip and knee kinematics and kinetics during anticipated and unanticipated jump landings: implications for anterior cruciate ligament injury. Br J Sports Med. 2009;43(13):1049–56.PubMedCrossRefGoogle Scholar
  227. 227.
    Pollard CD, Davis IM, Hamill J. Influence of gender on hip and knee mechanics during a randomly cued cutting maneuver. Clin Biomech. 2004;19(10):1022–31.CrossRefGoogle Scholar
  228. 228.
    Almonroeder TG, Kernozek T, Cobb S, et al. Cognitive demands influence lower extremity mechanics during a drop vertical jump task in female athletes. J Orthop Sports Phys Ther. 2018;48(5):381–7.PubMedCrossRefGoogle Scholar
  229. 229.
    Besier TF, Lloyd DG, Ackland TR, et al. Anticipatory effects on knee joint loading during running and cutting maneuvers. Med Sci Sports Exerc. 2001;33(7):1176–81.PubMedCrossRefGoogle Scholar
  230. 230.
    Meinerz CM, Malloy P, Geiser CF, et al. Anticipatory effects on lower extremity neuromechanics during a cutting task. J Athl Train. 2015;50(9):905–13.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Monfort SM, Comstock RD, Collins CL, Onate JA, Best TM, Chaudhari AM. Association between ball-handling versus defending actions and acute noncontact lower extremity injuries in high school basketball and soccer. Am J Sports Med. 2015;43(4):802–7.PubMedCrossRefGoogle Scholar
  232. 232.
    Dingenen B, Janssens L, Luyckx T, Claes S, Bellemans J, Staes FF. Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament injured subjects. Hum Mov Sci. 2015;44:234–45.PubMedCrossRefGoogle Scholar
  233. 233.
    Dingenen B, Janssens L, Luyckx T, Claes S, Bellemans J, Staes FF. Postural stability during the transition from double-leg stance to single-leg stance in anterior cruciate ligament injured subjects. Clin Biomech. 2015;30(3):283–9.CrossRefGoogle Scholar
  234. 234.
    Sadoghi P, von Keudell A, Vavken P. Effectiveness of anterior cruciate ligament injury prevention training programs. J Bone Joint Surg. 2012;94(9):769–76.PubMedCrossRefGoogle Scholar
  235. 235.
    Ardern CL, Taylor NF, Feller JA, Webster KE. Return-to-sport outcomes at 2 to 7 years after anterior cruciate ligament reconstruction surgery. Am J Sports Med. 2012;40(1):41–8.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Zabala ME, Favre J, Scanlan SF, Donahue J, Andriacchi TP. Three-dimensional knee moments of ACL reconstructed and control subjects during gait, stair ascent, and stair descent. J Biomech. 2013;46(3):515–20.PubMedCrossRefGoogle Scholar
  237. 237.
    Wilkerson GB. Neurocognitive reaction time predicts lower extremity sprains and strains. Int J Athl Ther Train. 2012;17(6):4–9.CrossRefGoogle Scholar
  238. 238.
    Appelbaum LG, Cain MS, Schroeder JE, Darling EF, Mitroff SR. Stroboscopic visual training improves information encoding in short-term memory. Atten Percept Psychophys. 2012;74:1–11.CrossRefGoogle Scholar
  239. 239.
    Appelbaum LG, Schroeder JE, Cain MS, Mitroff SR. Improved visual cognition through stroboscopic training. Front Psychol. 2011;2:276.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Swanik CBSK, Huxel KC, Tiemey RT, Hamstra KL, Hillstrom HJ. EMG and kinematic analysis of drop jumps from an unknown height: a mechanism for non-contact injuries. J Athl Train. 2003;38(2):S18.Google Scholar
  241. 241.
    Swanik K, Swanik C, Huxel K, Huston K, Fierney R, Hillerstrom H. Gender difference in drop jumps from unknown heights: an EMG and kinematic analysis. J Athl Train. 2004;39:S14–5.Google Scholar
  242. 242.
    Mitroff SFP, Bennett D, Yoo H, Reichow A. Enhancing ice hockey skills through stroboscopic visual training: a pilot study. Athl Train Sports Health Care. 2013;5(6):261–4.CrossRefGoogle Scholar
  243. 243.
    Smith TQ, Mitroff SR. Stroboscopic training enhances anticipatory timing. Int J Exerc Sci. 2012;5(4):4.Google Scholar
  244. 244.
    Di Stasi S, Myer GD, Hewett TE. Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2013;43(11):777–92.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Kim KM, Kim JS, Grooms DR. Stroboscopic vision to induce sensory reweighting during postural control. J Sport Rehabil. 2017;26:1–11.CrossRefGoogle Scholar
  246. 246.
    Harpham JA, Mihalik JP, Littleton AC, Frank BS, Guskiewicz KM. The effect of visual and sensory performance on head impact biomechanics in college football players. Ann Biomed Eng. 2013;42(1):1–10.PubMedCrossRefGoogle Scholar
  247. 247.
    Mihalik JP, Blackburn JT, Greenwald RM, Cantu RC, Marshall SW, Guskiewicz KM. Collision type and player anticipation affect head impact severity among youth ice hockey players. Pediatrics. 2010;125(6):E1394–401.PubMedCrossRefGoogle Scholar
  248. 248.
    Houck JR, De Haven KE, Maloney M. Influence of anticipation on movement patterns in subjects with ACL deficiency classified as noncopers. J Orthop Sports Phys Ther. 2007;37(2):56–64.PubMedCrossRefGoogle Scholar
  249. 249.
    Pelletier R, Higgins J, Bourbonnais D. Is neuroplasticity in the central nervous system the missing link to our understanding of chronic musculoskeletal disorders? BMC Musculoskelet Disord. 2015;16(1):25.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Ross LM, Register-Mihalik JK, Mihalik JP, et al. Effects of a single-task versus a dual-task paradigm on cognition and balance in healthy subjects. J Sport Rehabil. 2011;20:296–310.PubMedCrossRefGoogle Scholar
  251. 251.
    Teel EF, Register-Mihalik JK, Troy Blackburn J, Guskiewicz KM. Balance and cognitive performance during a dual-task: preliminary implications for use in concussion assessment. J Sci Med Sport. 2013;16:190–4.PubMedCrossRefGoogle Scholar
  252. 252.
    Verburgh L, Scherder EJ, Van Lange PA, Oosterlaan J. Do elite and amateur soccer players outperform non-athletes on neurocognitive functioning? A study among 8-12 year old children. PLoS One. 2016;11:e0165741.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Alhilali LM, Yaeger K, Collins M, Fakhran S. Detection of central white matter injury underlying vestibulopathy after mild traumatic brain injury. Radiology. 2014;272:224–32.PubMedCrossRefGoogle Scholar
  254. 254.
    Schubert MC, Minor LB. Vestibulo-ocular physiology underlying vestibular hypofunction. Phys Ther. 2004;84:373–85.PubMedGoogle Scholar
  255. 255.
    Hillier S, McDonnell M. Is vestibular rehabilitation effective in improving dizziness and function after unilateral peripheral vestibular hypofunction? An abridged version of a Cochrane Review. Eur J Phys Rehabil Med. 2016;52:541–56.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • James Onate
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Daniel Herman
    • 7
  • Dustin Grooms
    • 8
    • 9
    • 10
    • 11
  • Zach Sutton
    • 12
  • Gary Wilkerson
    • 13
    Email author
  1. 1.OSU Division of Athletic TrainingThe Ohio State UniversityColumbusUSA
  2. 2.OSU Movement Optimization Prevention for Exercise Sustainment (MOvES)The Ohio State UniversityColumbusUSA
  3. 3.OSU Movement Analysis & Performance Research ProgramThe Ohio State UniversityColumbusUSA
  4. 4.Stanley D. and Joan H. Ross Center for Brain Health & PerformanceThe Ohio State UniversityColumbusUSA
  5. 5.OSU Sports Medicine Research InstituteThe Ohio State UniversityColumbusUSA
  6. 6.OSU Human Performance CollaborativeThe Ohio State UniversityColumbusUSA
  7. 7.Divisions of PM&R, Sports Medicine, and Research, Department of Orthopedics and RehabilitationUniversity of FloridaGainesvilleUSA
  8. 8.Athletic TrainingOhio UniversityAthensUSA
  9. 9.School Applied Health Sciences & WellnessOhio UniversityAthensUSA
  10. 10.College of Health Sciences and ProfessionsOhio UniversityAthensUSA
  11. 11.Ohio Musculoskeletal & Neurological InstituteOhio UniversityAthensUSA
  12. 12.Health Rehabilitation CentersUniversity of FloridaGainesvilleUSA
  13. 13.University of Tennessee at ChattanoogaChattanoogaUSA

Personalised recommendations