Advertisement

Running, Agility, and Sportsmetrics Training

  • Sue Barber-WestinEmail author
  • Frank R. Noyes
Chapter

Abstract

This chapter reviews the running, agility, basic plyometric, and advanced Sportsmetrics neuromuscular training programs for anterior cruciate ligament reconstruction postoperative rehabilitation. The exercises are detailed, with the criteria provided to advance the patient through training in a manner that is safe and responsive to the patient’s final activity-level goals. Our comprehensive objective assessment of muscle strength, neuromuscular function, balance, range of knee motion, and ligament stability required for release to unrestricted athletics is provided.

Keywords

ACL rehabilitation ACL neuromuscular training Sportsmetrics ACL sports 

References

  1. 1.
    Faltstrom A, Hagglund M, Magnusson H, Forssblad M, Kvist J. Predictors for additional anterior cruciate ligament reconstruction: data from the Swedish national ACL register. Knee Surg Sports Traumatol Arthrosc. 2016;24:885.  https://doi.org/10.1007/s00167-014-3406-6.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hettrich CM, Dunn WR, Reinke EK, MOON Group, Spindler KP. The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: two- and 6-year follow-up results from a multicenter cohort. Am J Sports Med. 2013;41(7):1534–40.  https://doi.org/10.1177/0363546513490277.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hui C, Salmon LJ, Kok A, Maeno S, Linklater J, Pinczewski LA. Fifteen-year outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft for “isolated” anterior cruciate ligament tear. Am J Sports Med. 2011;39(1):89–98.  https://doi.org/10.1177/0363546510379975.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Consortium M, Spindler KP. Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med. 2015;43(7):1583–90.  https://doi.org/10.1177/0363546515578836.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kamien PM, Hydrick JM, Replogle WH, Go LT, Barrett GR. Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med. 2013;41(8):1808–12.  https://doi.org/10.1177/0363546513493896.CrossRefGoogle Scholar
  6. 6.
    Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy. 2012;28(4):526–31.  https://doi.org/10.1016/j.arthro.2011.11.024.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Maletis GB, Inacio MC, Funahashi TT. Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med. 2015;43(3):641–7.  https://doi.org/10.1177/0363546514561745.CrossRefGoogle Scholar
  8. 8.
    Morgan MD, Salmon LJ, Waller A, Roe JP, Pinczewski LA. Fifteen-year survival of endoscopic anterior cruciate ligament reconstruction in patients aged 18 years and younger. Am J Sports Med. 2016;44(2):384–92.  https://doi.org/10.1177/0363546515623032.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH. Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21(5):1111–8.  https://doi.org/10.1007/s00167-012-2085-4.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):1567–73.  https://doi.org/10.1177/0363546514530088.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM, Fevang JM. Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004-2012. Am J Sports Med. 2014;42(2):285–91.  https://doi.org/10.1177/0363546513511419.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ponce BA, Cain EL Jr, Pflugner R, Fleisig GS, Young BL, Boohaker HA, Swain TA, Andrews JR, Dugas JR. Risk factors for revision anterior cruciate ligament reconstruction. J Knee Surg. 2016;29(4):329–36.  https://doi.org/10.1055/s-0035-1554925.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Salmon LJ, Russell VJ, Refshauge K, Kader D, Connolly C, Linklater J, Pinczewski LA. Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med. 2006;34(5):721–32.CrossRefGoogle Scholar
  14. 14.
    Schlumberger M, Schuster P, Schulz M, Immendorfer M, Mayer P, Bartholoma J, Richter J. Traumatic graft rupture after primary and revision anterior cruciate ligament reconstruction: retrospective analysis of incidence and risk factors in 2915 cases. Knee Surg Sports Traumatol Arthrosc. 2017;25:1535.  https://doi.org/10.1007/s00167-015-3699-0.CrossRefPubMedGoogle Scholar
  15. 15.
    Shelbourne KD, Gray T, Haro M. Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med. 2009;37(2):246–51.CrossRefGoogle Scholar
  16. 16.
    Thompson S, Salmon L, Waller A, Linklater J, Roe J, Pinczewski L. Twenty-year outcomes of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon autografts. Am J Sports Med. 2015;43(9):2164–74.  https://doi.org/10.1177/0363546515591263.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Webster KE, Feller JA. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(11):2827–32.  https://doi.org/10.1177/0363546516651845.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76.  https://doi.org/10.1177/0363546515621554.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(12):1697–705.  https://doi.org/10.1016/j.arthro.2011.09.009.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Barber-Westin SD, Noyes FR. 10 - Scientific basis of rehabilitation after anterior cruciate ligament autogenous reconstruction. In: Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 268–92.  https://doi.org/10.1016/B978-0-323-32903-3.00010-X.CrossRefGoogle Scholar
  21. 21.
    Heckmann TP, Noyes FR, Barber-Westin SD. 11 - Rehabilitation of primary and revision anterior cruciate ligament reconstruction. In: Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 293–329.  https://doi.org/10.1016/B978-0-323-32903-3.00011-1.CrossRefGoogle Scholar
  22. 22.
    Barber-Westin SD, Noyes FR, Heckmann TP, Shaffer BL. The effect of exercise and rehabilitation on anterior-posterior knee displacements after anterior cruciate ligament autograft reconstruction. Am J Sports Med. 1999;27(1):84–93.CrossRefGoogle Scholar
  23. 23.
    Barber-Westin SD, Noyes FR. The effect of rehabilitation and return to activity on anterior-posterior knee displacements after anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21(2):264–70.CrossRefGoogle Scholar
  24. 24.
    Noyes FR, Mangine RE, Barber S. Early knee motion after open and arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med. 1987;15(2):149–60.CrossRefGoogle Scholar
  25. 25.
    Noyes FR, Berrios-Torres S, Barber-Westin SD, Heckmann TP. Prevention of permanent arthrofibrosis after anterior cruciate ligament reconstruction alone or combined with associated procedures: a prospective study in 443 knees. Knee Surg Sports Traumatol Arthrosc. 2000;8(4):196–206.CrossRefGoogle Scholar
  26. 26.
    Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765–73.CrossRefGoogle Scholar
  27. 27.
    Barber-Westin SD, Hermeto AA, Noyes FR. A six-week neuromuscular training program for competitive junior tennis players. J Strength Cond Res. 2010;24(9):2372–82.  https://doi.org/10.1519/JSC.0b013e3181e8a47f.CrossRefPubMedGoogle Scholar
  28. 28.
    Noyes FR, Barber-Westin SD, Smith ST, Campbell T. A training program to improve neuromuscular indices in female high school volleyball players. J Strength Cond Res. 2011;25(8):2151–60.  https://doi.org/10.1519/JSC.0b013e3181f906ef.CrossRefPubMedGoogle Scholar
  29. 29.
    Noyes FR, Barber-Westin SD, Smith ST, Campbell T, Garrison TT. A training program to improve neuromuscular and performance indices in female high school basketball players. J Strength Cond Res. 2012;26(3):709–19.  https://doi.org/10.1519/JSC.0b013e318228194c.CrossRefPubMedGoogle Scholar
  30. 30.
    Noyes FR, Barber-Westin SD, Tutalo Smith ST, Campbell T. A training program to improve neuromuscular and performance indices in female high school soccer players. J Strength Cond Res. 2013;27(2):340–51.  https://doi.org/10.1519/JSC.0b013e31825423d9.CrossRefPubMedGoogle Scholar
  31. 31.
    Noyes FR, Barber-Westin SD. Neuromuscular retraining in female adolescent athletes: effect on athletic performance indices and noncontact anterior cruciate ligament injury rates. Sports. 2015;3:56–76.  https://doi.org/10.3390/sports3020056.CrossRefGoogle Scholar
  32. 32.
    Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J. The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med. 2005;33(2):197–207.CrossRefGoogle Scholar
  33. 33.
    Wilkerson GB, Colston MA, Short NI, Neal KL, Hoewischer PE, Pixley JJ. Neuromuscular changes in female collegiate athletes resulting from a plyometric jump-training program. J Athl Train. 2004;39(1):17–23.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Chelly MS, Hermassi S, Shephard RJ. Effects of in-season short-term plyometric training program on sprint and jump performance of young male track athletes. J Strength Cond Res. 2015;29(8):2128–36.  https://doi.org/10.1519/JSC.0000000000000860.CrossRefPubMedGoogle Scholar
  35. 35.
    Chelly MS, Hermassi S, Aouadi R, Shephard RJ. Effects of 8-week in-season plyometric training on upper and lower limb performance of elite adolescent handball players. J Strength Cond Res. 2014;28(5):1401–10.  https://doi.org/10.1519/JSC.0000000000000279.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ramirez-Campillo R, Meylan C, Alvarez C, Henriquez-Olguin C, Martinez C, Canas-Jamett R, Andrade DC, Izquierdo M. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J Strength Cond Res. 2014;28(5):1335–42.  https://doi.org/10.1519/JSC.0000000000000284.CrossRefPubMedGoogle Scholar
  37. 37.
    Ramirez-Campillo R, Alvarez C, Henriquez-Olguin C, Baez EB, Martinez C, Andrade DC, Izquierdo M. Effects of plyometric training on endurance and explosive strength performance in competitive middle- and long-distance runners. J Strength Cond Res. 2014;28(1):97–104.  https://doi.org/10.1519/JSC.0b013e3182a1f44c.CrossRefPubMedGoogle Scholar
  38. 38.
    Vaczi M, Tollar J, Meszler B, Juhasz I, Karsai I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J Hum Kinet. 2013;36:17–26.  https://doi.org/10.2478/hukin-2013-0002.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Barber-Westin SD, Noyes FR. Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review. Phys Sportsmed. 2011;39(3):100–10.  https://doi.org/10.3810/psm.2011.09.1926.CrossRefPubMedGoogle Scholar
  40. 40.
    Wroble RR, Van Ginkel LA, Grood ES, Noyes FR, Shaffer BL. Repeatability of the KT-1000 arthrometer in a normal population. Am J Sports Med. 1990;18(4):396–9.CrossRefGoogle Scholar
  41. 41.
    Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R. Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am. 1985;67(5):720–6.CrossRefGoogle Scholar
  42. 42.
    Zaffagnini S, Bruni D, Marcheggiani Muccioli GM, Bonanzinga T, Lopomo N, Bignozzi S, Marcacci M. Single-bundle patellar tendon versus non-anatomical double-bundle hamstrings ACL reconstruction: a prospective randomized study at 8-year minimum follow-up. Knee Surg Sports Traumatol Arthrosc. 2011;19(3):390–7.  https://doi.org/10.1007/s00167-010-1225-y.CrossRefPubMedGoogle Scholar
  43. 43.
    Choi NH, Lee JH, Son KM, Victoroff BN. Tibial tunnel widening after anterior cruciate ligament reconstructions with hamstring tendons using Rigidfix femoral fixation and Intrafix tibial fixation. Knee Surg Sports Traumatol Arthrosc. 2010;18(1):92–7.  https://doi.org/10.1007/s00167-009-0951-5.CrossRefPubMedGoogle Scholar
  44. 44.
    Landes S, Nyland J, Elmlinger B, Tillett E, Caborn D. Knee flexor strength after ACL reconstruction: comparison between hamstring autograft, tibialis anterior allograft, and non-injured controls. Knee Surg Sports Traumatol Arthrosc. 2010;18(3):317–24.  https://doi.org/10.1007/s00167-009-0931-9.CrossRefPubMedGoogle Scholar
  45. 45.
    Hartigan EH, Axe MJ, Snyder-Mackler L. Time line for noncopers to pass return-to-sports criteria after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2010;40(3):141–54.  https://doi.org/10.2519/jospt.2010.3168.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Isberg J, Faxen E, Brandsson S, Eriksson BI, Karrholm J, Karlsson J. Early active extension after anterior cruciate ligament reconstruction does not result in increased laxity of the knee. Knee Surg Sports Traumatol Arthrosc. 2006;14(11):1108–15.  https://doi.org/10.1007/s00167-006-0138-2.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sajovic M, Vengust V, Komadina R, Tavcar R, Skaza K. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. Am J Sports Med. 2006;34(12):1933–40.CrossRefGoogle Scholar
  48. 48.
    Poehling GG, Curl WW, Lee CA, Ginn TA, Rushing JT, Naughton MJ, Holden MB, Martin DF, Smith BP. Analysis of outcomes of anterior cruciate ligament repair with 5-year follow-up: allograft versus autograft. Arthroscopy. 2005;21(7):774–85.CrossRefGoogle Scholar
  49. 49.
    Kvist J. Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med. 2004;34(4):269–80.CrossRefGoogle Scholar
  50. 50.
    Beynnon BD, Johnson RJ, Fleming BC, Kannus P, Kaplan M, Samani J, Renstr m P. Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts: a prospective, randomized study. J Bone Joint Surg Am. 2002;84-A(9):1503.CrossRefGoogle Scholar
  51. 51.
    Henriksson M, Rockborn P, Good L. Range of motion training in brace vs. plaster immobilization after anterior cruciate ligament reconstruction: a prospective randomized comparison with a 2-year follow-up. Scand J Med Sci Sports. 2002;12(2):73–80.CrossRefGoogle Scholar
  52. 52.
    Moller E, Forssblad M, Hansson L, Wange P, Weidenhielm L. Bracing versus nonbracing in rehabilitation after anterior cruciate ligament reconstruction: a randomized prospective study with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2001;9(2):102–8.CrossRefGoogle Scholar
  53. 53.
    Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011;3(5):472–9.  https://doi.org/10.1016/j.pmrj.2010.10.025.CrossRefPubMedGoogle Scholar
  54. 54.
    Toonstra J, Mattacola CG. Test-retest reliability and validity of isometric knee-flexion and -extension measurement using 3 methods of assessing muscle strength. J Sport Rehabil. 2013;22(1).  https://doi.org/10.1123/jsr.2013.TR7.
  55. 55.
    Whiteley R, Jacobsen P, Prior S, Skazalski C, Otten R, Johnson A. Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J Sci Med Sport. 2012;15(5):444–50.  https://doi.org/10.1016/j.jsams.2012.01.003.CrossRefPubMedGoogle Scholar
  56. 56.
    Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78(3):976–89.CrossRefGoogle Scholar
  57. 57.
    Reiman MP, Manske RC. Functional testing in human performance. Champaign: Human Kinetics; 2009.Google Scholar
  58. 58.
    Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W. Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res. 1990;(255):204–214.Google Scholar
  59. 59.
    Noyes FR, Barber SD, Mangine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med. 1991;19(5):513–8.CrossRefGoogle Scholar
  60. 60.
    Barrett GR, Luber K, Replogle WH, Manley JL. Allograft anterior cruciate ligament reconstruction in the young, active patient: tegner activity level and failure rate. Arthroscopy. 2010;26(12):1593–601.  https://doi.org/10.1016/j.arthro.2010.05.014.CrossRefPubMedGoogle Scholar
  61. 61.
    Logerstedt D, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L. Single-legged hop tests as predictors of self-reported knee function after anterior cruciate ligament reconstruction: the Delaware-Oslo ACL cohort study. Am J Sports Med. 2012;40(10):2348–56.  https://doi.org/10.1177/0363546512457551.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Logerstedt D, Di Stasi S, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L. Self-reported knee function can identify athletes who fail return-to-activity criteria up to 1 year after anterior cruciate ligament reconstruction: a Delaware-Oslo ACL cohort study. J Orthop Sports Phys Ther. 2014;44(12):914–23.  https://doi.org/10.2519/jospt.2014.4852.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sigward SM, Havens KL, Powers CM. Knee separation distance and lower extremity kinematics during a drop land: implications for clinical screening. J Athl Train. 2011;46(5):471–5.CrossRefGoogle Scholar
  64. 64.
    Nilstad A, Andersen TE, Kristianslund E, Bahr R, Myklebust G, Steffen K, Krosshaug T. Physiotherapists can identify female football players with high knee valgus angles during vertical drop jumps using real-time observational screening. J Orthop Sports Phys Ther. 2014;44(5):358–65.  https://doi.org/10.2519/jospt.2014.4969.CrossRefPubMedGoogle Scholar
  65. 65.
    Pollard CD, Sigward SM, Powers CM. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech (Bristol, Avon). 2010;25(2):142–6.  https://doi.org/10.1016/j.clinbiomech.2009.10.005.CrossRefGoogle Scholar
  66. 66.
    Ireland ML, Durbin T, Bolgla LA. Gender differences in core strength and lower extremity function during the single-leg squat test. In: Noyes FR, Barber-Westin SD, editors. ACL injuries in the female athlete: causes, impacts, and conditioning programs. Berlin: Springer-Verlag; 2012. p. 203–19.CrossRefGoogle Scholar
  67. 67.
    Ageberg E, Bennell KL, Hunt MA, Simic M, Roos EM, Creaby MW. Validity and inter-rater reliability of medio-lateral knee motion observed during a single-limb mini squat. BMC Musculoskelet Disord. 2010;11:265.  https://doi.org/10.1186/1471-2474-11-265.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22(1):41–50.CrossRefGoogle Scholar
  69. 69.
    Ireland ML. The female ACL: why is it more prone to injury? Orthop Clin North Am. 2002;33(4):637–51.CrossRefGoogle Scholar
  70. 70.
    Cortes N, Onate J, Van Lunen B. Pivot task increases knee frontal plane loading compared with sidestep and drop-jump. J Sports Sci. 2011;29(1):83–92.  https://doi.org/10.1080/02640414.2010.523087.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Jones PA, Herrington LC, Munro AG, Graham-Smith P. Is there a relationship between landing, cutting, and pivoting tasks in terms of the characteristics of dynamic valgus? Am J Sports Med. 2014;42(9):2095–102.  https://doi.org/10.1177/0363546514539446.CrossRefPubMedGoogle Scholar
  72. 72.
    Nagano Y, Ida H, Akai M, Fukubayashi T. Biomechanical characteristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury. Knee. 2009;16(2):153–8.  https://doi.org/10.1016/j.knee.2008.10.012.CrossRefPubMedGoogle Scholar
  73. 73.
    Pollard CD, Sigward SM, Powers CM. Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med. 2007;17(1):38–42.  https://doi.org/10.1097/JSM.0b013e3180305de8.CrossRefPubMedGoogle Scholar
  74. 74.
    Ramsbottom R, Brewer J, Williams C. A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med. 1988;22(4):141–4.CrossRefGoogle Scholar
  75. 75.
    Okada T, Huxel KC, Nesser TW. Relationship between core stability, functional movement, and performance. J Strength Cond Res. 2011;25(1):252–61.  https://doi.org/10.1519/JSC.0b013e3181b22b3e.CrossRefPubMedGoogle Scholar
  76. 76.
    Noyes FR, Barber-Westin SD. Sportsmetrics ACL intervention training program: components and results. In: Noyes FR, Barber-Westin SD, editors. ACL injuries in the female athlete: causes, impacts, and conditioning programs. 2nd ed. Berlin: Springer-Verlag; 2018. p. 337–76.  https://doi.org/10.1007/978-3-662-56558-2_17.CrossRefGoogle Scholar
  77. 77.
    Ireland ML, Bolgla LA, Noehren B. Gender differences in core strength and lower extremity function during static and dynamic single-leg squat tests. In: Noyes FR, Barber-Westin SD, editors. ACL injuries in the female athlete. causes, impacts, and conditioning programs. 2nd ed. Berlin: Springer-Verlag; 2018.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Noyes Knee InstituteCincinnatiUSA
  2. 2.Cincinnati Sports Medicine and Orthopaedic CenterThe Noyes Knee InstituteCincinnatiUSA

Personalised recommendations