Advertisement

Early Postoperative Rehabilitation to Avoid Complications and Prepare for Return to Sport Training

  • Frank R. Noyes
  • Sue Barber-WestinEmail author
Chapter

Abstract

This chapter reviews the scientific principles and concepts for anterior cruciate ligament reconstruction postoperative rehabilitation programs. The scientific concepts and basis for immediate knee motion and weight-bearing, as well as early restoration of muscle strength and neuromuscular function, are presented. Potential major complications are discussed, including infection, deep venous thrombosis, arthrofibrosis, complex regional pain syndrome, and patella infera, to enable early detection and treatment. The exercises and modalities used for programs are presented. Criteria are provided to advance the patient in a manner that is safe to the healing graft and responsive to the patient’s final activity level goals.

Keywords

ACL rehabilitation ACL complications Neuromuscular function ACL postoperative exercises 

References

  1. 1.
    Shaarani SR, O’Hare C, Quinn A, Moyna N, Moran R, O'Byrne JM. Effect of prehabilitation on the outcome of anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(9):2117–27.  https://doi.org/10.1177/0363546513493594.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Eitzen I, Moksnes H, Snyder-Mackler L, Risberg MA. A progressive 5-week exercise therapy program leads to significant improvement in knee function early after anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2010;40(11):705–21.  https://doi.org/10.2519/jospt.2010.3345.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    de Valk EJ, Moen MH, Winters M, Bakker EW, Tamminga R, van der Hoeven H. Preoperative patient and injury factors of successful rehabilitation after anterior cruciate ligament reconstruction with single-bundle techniques. Arthroscopy. 2013;29(11):1879–95.  https://doi.org/10.1016/j.arthro.2013.07.273.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Silkman C, McKeon J. The effect of preoperative quadriceps strength on strength and function after anterior cruciate ligament reconstruction. J Sport Rehabil. 2012;21(1):89–93.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    van Grinsven S, van Cingel RE, Holla CJ, van Loon CJ. Evidence-based rehabilitation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2010;18(8):1128–44.  https://doi.org/10.1007/s00167-009-1027-2.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Quelard B, Sonnery-Cottet B, Zayni R, Ogassawara R, Prost T, Chambat P. Preoperative factors correlating with prolonged range of motion deficit after anterior cruciate ligament reconstruction. Am J Sports Med. 2010;38(10):2034–9.  https://doi.org/10.1177/0363546510370198.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Logerstedt D, Lynch A, Axe MJ, Snyder-Mackler L. Symmetry restoration and functional recovery before and after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):859–68.  https://doi.org/10.1007/s00167-012-1929-2.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Logerstedt D, Lynch A, Axe MJ, Snyder-Mackler L. Pre-operative quadriceps strength predicts IKDC 2000 scores 6 months after anterior cruciate ligament reconstruction. Knee. 2013;20(3):208–12.  https://doi.org/10.1016/j.knee.2012.07.011.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Faltstrom A, Hagglund M, Magnusson H, Forssblad M, Kvist J. Predictors for additional anterior cruciate ligament reconstruction: data from the Swedish national ACL register. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):885–94.  https://doi.org/10.1007/s00167-014-3406-6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hettrich CM, Dunn WR, Reinke EK, Group M, Spindler KP. The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: two- and 6-year follow-up results from a multicenter cohort. Am J Sports Med. 2013;41(7):1534–40.  https://doi.org/10.1177/0363546513490277.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hui C, Salmon LJ, Kok A, Maeno S, Linklater J, Pinczewski LA. Fifteen-year outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft for “isolated” anterior cruciate ligament tear. Am J Sports Med. 2011;39(1):89–98.  https://doi.org/10.1177/0363546510379975.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Consortium M, Spindler KP. Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON Cohort. Am J Sports Med. 2015;43(7):1583–90.  https://doi.org/10.1177/0363546515578836.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kamien PM, Hydrick JM, Replogle WH, Go LT, Barrett GR. Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med. 2013;41(8):1808–12.  https://doi.org/10.1177/0363546513493896.CrossRefPubMedGoogle Scholar
  14. 14.
    Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy. 2012;28(4):526–31.  https://doi.org/10.1016/j.arthro.2011.11.024.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Maletis GB, Inacio MC, Funahashi TT. Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med. 2015;43(3):641–7.  https://doi.org/10.1177/0363546514561745.CrossRefPubMedGoogle Scholar
  16. 16.
    Morgan MD, Salmon LJ, Waller A, Roe JP, Pinczewski LA. Fifteen-year survival of endoscopic anterior cruciate ligament reconstruction in patients aged 18 years and younger. Am J Sports Med. 2016;44(2):384–92.  https://doi.org/10.1177/0363546515623032.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH. Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21(5):1111–8.  https://doi.org/10.1007/s00167-012-2085-4.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):1567–73.  https://doi.org/10.1177/0363546514530088.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM, Fevang JM. Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004-2012. Am J Sports Med. 2014;42(2):285–91.  https://doi.org/10.1177/0363546513511419.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ponce BA, Cain EL Jr, Pflugner R, Fleisig GS, Young BL, Boohaker HA, Swain TA, Andrews JR, Dugas JR. Risk factors for revision anterior cruciate ligament reconstruction. J Knee Surg. 2016;29(4):329–36.  https://doi.org/10.1055/s-0035-1554925.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schlumberger M, Schuster P, Schulz M, Immendorfer M, Mayer P, Bartholoma J, Richter J. Traumatic graft rupture after primary and revision anterior cruciate ligament reconstruction: retrospective analysis of incidence and risk factors in 2915 cases. Knee Surg Sports Traumatol Arthrosc. 2015;25(5):1535–41.  https://doi.org/10.1007/s00167-015-3699-0.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shelbourne KD, Gray T, Haro M. Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med. 2009;37(2):246–51.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Thompson S, Salmon L, Waller A, Linklater J, Roe J, Pinczewski L. Twenty-year outcomes of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon autografts. Am J Sports Med. 2015;43(9):2164–74.  https://doi.org/10.1177/0363546515591263.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Webster KE, Feller JA. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(11):2827–32.  https://doi.org/10.1177/0363546516651845.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76.  https://doi.org/10.1177/0363546515621554.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Barber-Westin SD, Noyes FR. Scientific basis of rehabilitation after anterior cruciate ligament autogenous reconstruction. In: Noyes FR, Barber-Westin SD, editors. Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 268–92.  https://doi.org/10.1016/b978-0-323-32903-3.00010-x.CrossRefGoogle Scholar
  27. 27.
    Heckmann TP, Noyes FR, Barber-Westin SD. Rehabilitation of primary and revision anterior cruciate ligament reconstruction. In: Noyes FR, Barber-Westin SD, editors. Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 293–329.  https://doi.org/10.1016/b978-0-323-32903-3.00011-1.CrossRefGoogle Scholar
  28. 28.
    Barber-Westin SD, Noyes FR, Heckmann TP, Shaffer BL. The effect of exercise and rehabilitation on anterior-posterior knee displacements after anterior cruciate ligament autograft reconstruction. Am J Sports Med. 1999;27(1):84–93.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Barber-Westin SD, Noyes FR. The effect of rehabilitation and return to activity on anterior-posterior knee displacements after anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21(2):264–70.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Noyes FR, Barber-Westin SD. Anterior cruciate ligament primary reconstruction: diagnosis, operative techniques, and clinical outcomes. In: Noyes FR, Barber-Westin SD, editors. Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 137–220.  https://doi.org/10.1016/b978-0-323-32903-3.00007-x.CrossRefGoogle Scholar
  31. 31.
    Noyes FR, Barber-Westin SD. Anterior cruciate ligament revision reconstruction: graft options and clinical outcomes. In: Noyes FR, Barber-Westin SD, editors. Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 221–57.  https://doi.org/10.1016/b978-0-323-32903-3.00008-1.CrossRefGoogle Scholar
  32. 32.
    Noyes FR, Mangine RE, Barber S. Early knee motion after open and arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med. 1987;15(2):149–60.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Noyes FR, Berrios-Torres S, Barber-Westin SD, Heckmann TP. Prevention of permanent arthrofibrosis after anterior cruciate ligament reconstruction alone or combined with associated procedures: a prospective study in 443 knees. Knee Surg Sports Traumatol Arthrosc. 2000;8(4):196–206.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Palmieri-Smith RM, Kreinbrink J, Ashton-Miller JA, Wojtys EM. Quadriceps inhibition induced by an experimental knee joint effusion affects knee joint mechanics during a single-legged drop landing. Am J Sports Med. 2007;35(8):1269–75.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Torry MR, Decker MJ, Viola RW, O’Connor DD, Steadman JR. Intra-articular knee joint effusion induces quadriceps avoidance gait patterns. Clin Biomech. 2000;15(3):147–59.CrossRefGoogle Scholar
  36. 36.
    Torry MR, Decker MJ, Millett PJ, Steadman JR, Sterett WI. The effects of knee joint effusion on quadriceps electromyography during jogging. J Sports Sci Med. 2005;4:1–8.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jensen K, Graf BK. The effects of knee effusion on quadriceps strength and knee intraarticular pressure. Arthroscopy. 1993;9(1):52–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008;27(3):405–24.  https://doi.org/10.1016/j.csm.2008.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kuenze C, Hart JM. Cryotherapy to treat persistent muscle weakness after joint injury. Phys Sportsmed. 2010;38(3):38–44.  https://doi.org/10.3810/psm.2010.10.1806.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ito Y, Deie M, Adachi N, Kobayashi K, Kanaya A, Miyamoto A, Nakasa T, Ochi M. A prospective study of 3-day versus 2-week immobilization period after anterior cruciate ligament reconstruction. Knee. 2007;14(1):34–8.  https://doi.org/10.1016/j.knee.2006.10.004.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Henriksson M, Rockborn P, Good L. Range of motion training in brace vs. plaster immobilization after anterior cruciate ligament reconstruction: a prospective randomized comparison with a 2-year follow-up. Scand J Med Sci Sports. 2002;12(2):73–80.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part 2. Am J Sports Med. 2005;33(11):1751–67.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Isberg J, Faxen E, Brandsson S, Eriksson BI, Karrholm J, Karlsson J. Early active extension after anterior cruciate ligament reconstruction does not result in increased laxity of the knee. Knee Surg Sports Traumatol Arthrosc. 2006;14(11):1108–15.  https://doi.org/10.1007/s00167-006-0138-2.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kruse LM, Gray B, Wright RW. Rehabilitation after anterior cruciate ligament reconstruction: a systematic review. J Bone Joint Surg. 2012;94(19):1737–48.  https://doi.org/10.2106/JBJS.K.01246.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Noyes FR, Butler DL, Paulos LE, Grood ES. Intra-articular cruciate reconstruction. I: perspectives on graft strength, vascularization, and immediate motion after replacement. Clin Orthop Relat Res. 1983;172:71–7.Google Scholar
  46. 46.
    Cosgarea AJ, Sebastianelli WJ, DeHaven KE. Prevention of arthrofibrosis after anterior cruciate ligament reconstruction using the central third patellar tendon autograft. Am J Sports Med. 1995;23(1):87–92.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Skyhar MJ, Danzig LA, Hargens AR, Akeson WH. Nutrition of the anterior cruciate ligament. Effects of continuous passive motion. Am J Sports Med. 1985;13(6):415–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Paulos LE, Wnorowski DC, Greenwald AE. Infrapatellar contracture syndrome. Diagnosis, treatment, and long-term followup. Am J Sports Med. 1994;22(4):440–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Noyes FR, Wojtys EM. The early recognition, diagnosis and treatment of the patella infera syndrome. In: Tullos HS, editor. Instructional course lectures, vol. XL. Rosemont: AAOS; 1991. p. 233–47.Google Scholar
  50. 50.
    Noyes FR, Wojtys EM, Marshall MT. The early diagnosis and treatment of developmental patella infera syndrome. Clin Orthop Relat Res. 1991;265:241–52.Google Scholar
  51. 51.
    Noyes FR, Torvik PJ, Hyde WB, DeLucas JL. Biomechanics of ligament failure. II. An analysis of immobilization, exercise, and reconditioning effects in primates. J Bone Joint Surg. 1974;56(7):1406–18.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Wilk KE, Macrina LC, Cain EL, Dugas JR, Andrews JR. Recent advances in the rehabilitation of anterior cruciate ligament injuries. J Orthop Sports Phys Ther. 2012;42(3):153–71.  https://doi.org/10.2519/jospt.2012.3741.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Culvenor AG, Lai CC, Gabbe BJ, Makdissi M, Collins NJ, Vicenzino B, Morris HG, Crossley KM. Patellofemoral osteoarthritis is prevalent and associated with worse symptoms and function after hamstring tendon autograft ACL reconstruction. Br J Sports Med. 2014;48(6):435–9.  https://doi.org/10.1136/bjsports-2013-092975.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Neuman P, Kostogiannis I, Friden T, Roos H, Dahlberg LE, Englund M. Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury--a prospective cohort study. Osteoarthr Cartil. 2009;17(3):284–90.  https://doi.org/10.1016/j.joca.2008.07.005.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Shelbourne KD, Urch SE, Gray T, Freeman H. Loss of normal knee motion after anterior cruciate ligament reconstruction is associated with radiographic arthritic changes after surgery. Am J Sports Med. 2012;40(1):108–13.  https://doi.org/10.1177/0363546511423639.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Shelbourne KD, Benner RW, Gray T. Results of anterior cruciate ligament reconstruction with patellar tendon autografts: objective factors associated with the development of osteoarthritis at 20 to 33 years after surgery. Am J Sports Med. 2017;45(12):2730–8.  https://doi.org/10.1177/0363546517718827.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tyler TF, McHugh MP, Gleim GW, Nicholas SJ. The effect of immediate weightbearing after anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 1998;357:141–8.CrossRefGoogle Scholar
  58. 58.
    Wright RW, Preston E, Fleming BC, Amendola A, Andrish JT, Bergfeld JA, Dunn WR, Kaeding C, Kuhn JE, Marx RG, McCarty EC, Parker RC, Spindler KP, Wolcott M, Wolf BR, Williams GN. A systematic review of anterior cruciate ligament reconstruction rehabilitation: part I: continuous passive motion, early weight bearing, postoperative bracing, and home-based rehabilitation. J Knee Surg. 2008;21(3):217–24.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fukuda TY, Fingerhut D, Moreira VC, Camarini PM, Scodeller NF, Duarte A Jr, Martinelli M, Bryk FF. Open kinetic chain exercises in a restricted range of motion after anterior cruciate ligament reconstruction: a randomized controlled clinical trial. Am J Sports Med. 2013;41(4):788–94.  https://doi.org/10.1177/0363546513476482.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Beynnon BD, Johnson RJ, Naud S, Fleming BC, Abate JA, Brattbakk B, Nichols CE. Accelerated versus nonaccelerated rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind investigation evaluating knee joint laxity using roentgen stereophotogrammetric analysis. Am J Sports Med. 2011;39(12):2536–48.  https://doi.org/10.1177/0363546511422349.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sekir U, Gur H, Akova B. Early versus late start of isokinetic hamstring-strengthening exercise after anterior cruciate ligament reconstruction with patellar tendon graft. Am J Sports Med. 2010;38(3):492–500.  https://doi.org/10.1177/0363546509349490.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Harilainen A, Sandelin J. Post-operative use of knee brace in bone-tendon-bone patellar tendon anterior cruciate ligament reconstruction: 5-year follow-up results of a randomized prospective study. Scand J Med Sci Sports. 2006;16(1):14–8.  https://doi.org/10.1111/j.1600-0838.2004.00435.x.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hasegawa S, Kobayashi M, Arai R, Tamaki A, Nakamura T, Moritani T. Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction. J Electromyogr Kinesiol. 2011;21(4):622–30.  https://doi.org/10.1016/j.jelekin.2011.01.005.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Feil S, Newell J, Minogue C, Paessler HH. The effectiveness of supplementing a standard rehabilitation program with superimposed neuromuscular electrical stimulation after anterior cruciate ligament reconstruction: a prospective, randomized, single-blind study. Am J Sports Med. 2011;39(6):1238–47.  https://doi.org/10.1177/0363546510396180.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wilk KE, Chmielewski TL. Neuromuscular retraining after anterior cruciate ligament reconstruction. In: Noyes FR, Barber-Westin SD, editors. Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. Philadelphia: Saunders; 2010. p. 337–56.Google Scholar
  66. 66.
    Snyder-Mackler L, Ladin Z, Schepsis AA, Young JC. Electrical stimulation of the thigh muscles after reconstruction of the anterior cruciate ligament. Effects of electrically elicited contraction of the quadriceps femoris and hamstring muscles on gait and on strength of the thigh muscles. J Bone Joint Surg. 1991;73(7):1025–36.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW. Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Joint Surg. 1995;77(8):1166–73.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Delitto A, Rose SJ, McKowen JM, Lehman RC, Thomas JA, Shively RA. Electrical stimulation versus voluntary exercise in strengthening thigh musculature after anterior cruciate ligament surgery. Phys Ther. 1988;68(5):660–3.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wright RW, Preston E, Fleming BC, Amendola A, Andrish JT, Bergfeld JA, Dunn WR, Kaeding C, Kuhn JE, Marx RG, McCarty EC, Parker RC, Spindler KP, Wolcott M, Wolf BR, Williams GN. A systematic review of anterior cruciate ligament reconstruction rehabilitation: part II: open versus closed kinetic chain exercises, neuromuscular electrical stimulation, accelerated rehabilitation, and miscellaneous topics. J Knee Surg. 2008;21(3):225–34.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Imoto AM, Peccin S, Almeida GJ, Saconato H, Atallah AN. Effectiveness of electrical stimulation on rehabilitation after ligament and meniscal injuries: a systematic review. Sao Paulo Med J. 2011;129(6):414–23.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Draper V. Electromyographic biofeedback and recovery of quadriceps femoris muscle function following anterior cruciate ligament reconstruction. Phys Ther. 1990;70(1):11–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Draper V, Ballard L. Electrical stimulation versus electromyographic biofeedback in the recovery of quadriceps femoris muscle function following anterior cruciate ligament surgery. Phys Ther. 1991;71(6):455–61.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Christanell F, Hoser C, Huber R, Fink C, Luomajoki H. The influence of electromyographic biofeedback therapy on knee extension following anterior cruciate ligament reconstruction: a randomized controlled trial. Sports Med Arthrosc Rehabil Ther Technol. 2012;4(1):41.  https://doi.org/10.1186/1758-2555-4-41.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Perraton L, Clark R, Crossley K, Pua YH, Whitehead T, Morris H, Telianidis S, Bryant A. Impaired voluntary quadriceps force control following anterior cruciate ligament reconstruction: relationship with knee function. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):1424–31.  https://doi.org/10.1007/s00167-015-3937-5.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Schmitt LC, Paterno MV, Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):750–9.  https://doi.org/10.2519/jospt.2012.4194.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Hsiao SF, Chou PH, Hsu HC, Lue YJ. Changes of muscle mechanics associated with anterior cruciate ligament deficiency and reconstruction. J Strength Cond Res. 2014;28(2):390–400.  https://doi.org/10.1519/JSC.0b013e3182986cc1.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hart JM, Pietrosimone B, Hertel J, Ingersoll CD. Quadriceps activation following knee injuries: a systematic review. J Athl Train. 2010;45(1):87–97.  https://doi.org/10.4085/1062-6050-45.1.87.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM. Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train. 2013;48(5):610–20.  https://doi.org/10.4085/1062-6050-48.3.23.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    de Jong SN, van Caspel DR, van Haeff MJ, Saris DB. Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy. 2007;23(1):21–8.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ. Contralateral limb strength deficits after anterior cruciate ligament reconstruction using a hamstring tendon graft. Clin Biomech. 2007;22(5):543–50.  https://doi.org/10.1016/j.clinbiomech.2007.01.009.CrossRefGoogle Scholar
  81. 81.
    Karanikas K, Arampatzis A, Bruggemann GP. Motor task and muscle strength followed different adaptation patterns after anterior cruciate ligament reconstruction. Eur J Phys Rehabil Med. 2009;45(1):37–45.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Konishi Y, Ikeda K, Nishino A, Sunaga M, Aihara Y, Fukubayashi T. Relationship between quadriceps femoris muscle volume and muscle torque after anterior cruciate ligament repair. Scand J Med Sci Sports. 2007;17(6):656–61.  https://doi.org/10.1111/j.1600-0838.2006.00619.x.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Konishi Y, Oda T, Tsukazaki S, Kinugasa R, Hirose N, Fukubayashi T. Relationship between quadriceps femoris muscle volume and muscle torque after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):641–5.  https://doi.org/10.1007/s00167-010-1324-9.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Konishi Y, Fukubayashi T. Relationship between muscle volume and muscle torque of the hamstrings after anterior cruciate ligament reconstruction. J Sci Med Sport. 2010;13(1):101–5.  https://doi.org/10.1016/j.jsams.2008.08.001.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Moisala AS, Jarvela T, Kannus P, Jarvinen M. Muscle strength evaluations after ACL reconstruction. Int J Sports Med. 2007;28(10):868–72.  https://doi.org/10.1055/s-2007-964912.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Palmieri-Smith RM, Thomas AC. A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc Sport Sci Rev. 2009;37(3):147–53.  https://doi.org/10.1097/JES.0b013e3181aa6669.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Cuomo P, Rama KR, Bull AM, Amis AA. The effects of different tensioning strategies on knee laxity and graft tension after double-bundle anterior cruciate ligament reconstruction. Am J Sports Med. 2007;35(12):2083–90.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Oiestad BE, Holm I, Gunderson R, Myklebust G, Risberg MA. Quadriceps muscle weakness after anterior cruciate ligament reconstruction: a risk factor for knee osteoarthritis? Arthritis Care Res. 2010;62(12):1706–14.  https://doi.org/10.1002/acr.20299.CrossRefGoogle Scholar
  89. 89.
    Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock MI, Keays AC. Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med. 2010;38(3):455–63.  https://doi.org/10.1177/0363546509350914.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Tourville TW, Jarrell KM, Naud S, Slauterbeck JR, Johnson RJ, Beynnon BD. Relationship between isokinetic strength and tibiofemoral joint space width changes after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(2):302–11.  https://doi.org/10.1177/0363546513510672.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Haggmark T, Jansson E, Eriksson E. Fiber type area and metabolic potential of the thigh muscle in man after knee surgery and immobilization. Int J Sports Med. 1981;2(1):12–7.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Young A, Hughes I, Round JM, Edwards RH. The effect of knee injury on the number of muscle fibres in the human quadriceps femoris. Clin Sci. 1982;62(2):227–34.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Baugher WH, Warren RF, Marshall JL, Joseph A. Quadriceps atrophy in the anterior cruciate insufficient knee. Am J Sports Med. 1984;12(3):192–5.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Elmqvist LG, Lorentzon R, Johansson C, Fugl-Meyer AR. Does a torn anterior cruciate ligament lead to change in the central nervous drive of the knee extensors? Eur J Appl Physiol Occup Physiol. 1988;58(1-2):203–7.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lorentzon R, Elmqvist LG, Sjostrom M, Fagerlund M, Fuglmeyer AR. Thigh musculature in relation to chronic anterior cruciate ligament tear: muscle size, morphology, and mechanical output before reconstruction. Am J Sports Med. 1989;17(3):423–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med. 1987;15(3):207–13.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Johansson H, Sjolander P, Sojka P. Activity in receptor afferents from the anterior cruciate ligament evokes reflex effects on fusimotor neurones. Neurosci Res. 1990;8(1):54–9.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Johansson H, Sjolander P, Sojka P. A sensory role for the cruciate ligaments. Clin Orthop Relat Res. 1991;268:161–78.Google Scholar
  99. 99.
    Johansson H, Sjolander P, Sojka P. Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Crit Rev Biomed Eng. 1991;18(5):341–68.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Sojka P, Sjolander P, Johansson H, Djupsjobacka M. Influence from stretch-sensitive receptors in the collateral ligaments of the knee joint on the gamma-muscle-spindle systems of flexor and extensor muscles. Neurosci Res. 1991;11(1):55–62.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Snyder-Mackler L, Binder-Macleod SA, Williams PR. Fatigability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 1994;25(7):783–9.CrossRefGoogle Scholar
  102. 102.
    Konishi Y, Fukubayashi T, Takeshita D. Mechanism of quadriceps femoris muscle weakness in patients with anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2002;12(6):371–5.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Konishi Y, Konishi H, Fukubayashi T. Gamma loop dysfunction in quadriceps on the contralateral side in patients with ruptured ACL. Med Sci Sports Exerc. 2003;35(6):897–900.  https://doi.org/10.1249/01.MSS.0000069754.07541.D2.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Snyder-Mackler L, De Luca PF, Williams PR, Eastlack ME, Bartolozzi AR. Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg. 1994;76(4):555–60.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9:135–59.CrossRefGoogle Scholar
  106. 106.
    Krishnan C, Williams GN. Factors explaining chronic knee extensor strength deficits after ACL reconstruction. J Orthop Res. 2011;29(5):633–40.  https://doi.org/10.1002/jor.21316.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Mendias CL, Lynch EB, Davis ME, Sibilsky Enselman ER, Harning JA, Dewolf PD, Makki TA, Bedi A. Changes in circulating biomarkers of muscle atrophy, inflammation, and cartilage turnover in patients undergoing anterior cruciate ligament reconstruction and rehabilitation. Am J Sports Med. 2013;41(8):1819–26.  https://doi.org/10.1177/0363546513490651.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee. 2014;21(3):736–42.  https://doi.org/10.1016/j.knee.2014.02.008.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Reilly DT, Martens M. Experimental analysis of the quadriceps muscle force and patello-femoral joint reaction force for various activities. Acta Orthop Scand. 1972;43(2):126–37.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Smith AJ. Estimates of muscle and joint force at the knee and ankle during jumping activities. J Hum Mov Stud. 1975;1:78–86.Google Scholar
  111. 111.
    Escamilla RF, Zheng N, Macleod TD, Brent Edwards W, Imamura R, Hreljac A, Fleisig GS, Wilk KE, Moorman CT, Andrews JR. Patellofemoral joint force and stress during the wall squat and one-leg squat. Med Sci Sports Exerc. 2009;41(4):879–88.  https://doi.org/10.1249/MSS.0b013e31818e7ead.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Steinkamp LA, Dillingham MF, Markel MD, Hill JA, Kaufman KR. Biomechanical considerations in patellofemoral joint rehabilitation. Am J Sports Med. 1993;21(3):438–44.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Karasel S, Akpinar B, Gulbahar S, Baydar M, El O, Pinar H, Tatari H, Karaoglan O, Akalin E. Clinical and functional outcomes and proprioception after a modified accelerated rehabilitation program following anterior cruciate ligament reconstruction with patellar tendon autograft. Acta Orthop Traumatol Turc. 2010;44(3):220–8.  https://doi.org/10.3944/AOTT.2010.2293.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Gadea F, Monnot D, Quelard B, Mortati R, Thaunat M, Fayard JM, Sonnery-Cottet B. Knee pain after anterior cruciate ligament reconstruction: evaluation of a rehabilitation protocol. Eur J Orthop Surg Traumatol. 2014;24(5):789–95.  https://doi.org/10.1007/s00590-013-1248-4.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Doucette SA, Child DD. The effect of open and closed chain exercise and knee joint position on patellar tracking in lateral patellar compression syndrome. J Orthop Sports Phys Ther. 1996;23(2):104–10.  https://doi.org/10.2519/jospt.1996.23.2.104.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Escamilla RF, Fleisig GS, Zheng N, Lander JE, Barrentine SW, Andrews JR, Bergemann BW, Moorman CT. Effects of technique variations on knee biomechanics during the squat and leg press. Med Sci Sports Exerc. 2001;33(9):1552–66.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc. 1998;30(4):556–69.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Harvie D, O'Leary T, Kumar S. A systematic review of randomized controlled trials on exercise parameters in the treatment of patellofemoral pain: what works? J Multidiscip Healthc. 2011;4:383–92.  https://doi.org/10.2147/JMDH.S24595.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Chinkulprasert C, Vachalathiti R, Powers CM. Patellofemoral joint forces and stress during forward step-up, lateral step-up, and forward step-down exercises. J Orthop Sports Phys Ther. 2011;41(4):241–8.  https://doi.org/10.2519/jospt.2011.3408.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Beynnon BD, Johnson RJ, Fleming BC. The science of anterior cruciate ligament rehabilitation. Clin Orthop Relat Res. 2002;402:9–20.CrossRefGoogle Scholar
  121. 121.
    Beynnon B, Howe JG, Pope MH, Johnson RJ, Fleming BC. The measurement of anterior cruciate ligament strain in vivo. Int Orthop. 1992;16(1):1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med. 1995;23(1):24–34.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Beynnon BD, Johnson RJ, Fleming BC, Stankewich CJ, Renstrom PA, Nichols CE. The strain behavior of the anterior cruciate ligament during squatting and active flexion-extension. A comparison of an open and a closed kinetic chain exercise. Am J Sports Med. 1997;25(6):823–9.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Beynnon BD, Fleming BC. Anterior cruciate ligament strain in-vivo: a review of previous work. J Biomech. 1998;31(6):519–25.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Heijne A, Fleming BC, Renstrom PA, Peura GD, Beynnon BD, Werner S. Strain on the anterior cruciate ligament during closed kinetic chain exercises. Med Sci Sports Exerc. 2004;36(6):935–41.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Fleming BC, Beynnon BD, Renstrom PA, Peura GD, Nichols CE, Johnson RJ. The strain behavior of the anterior cruciate ligament during bicycling. An in vivo study. Am J Sports Med. 1998;26(1):109–18.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Fleming BC, Beynnon BD, Renstrom PA, Johnson RJ, Nichols CE, Peura GD, Uh BS. The strain behavior of the anterior cruciate ligament during stair climbing: an in vivo study. Arthroscopy. 1999;15(2):185–91.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Fleming BC, Oksendahl H, Beynnon BD. Open- or closed-kinetic chain exercises after anterior cruciate ligament reconstruction? Exerc Sport Sci Rev. 2005;33(3):134–40.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Fleming BC, Ohlen G, Renstrom PA, Peura GD, Beynnon BD, Badger GJ. The effects of compressive load and knee joint torque on peak anterior cruciate ligament strains. Am J Sports Med. 2003;31(5):701–7.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Escamilla RF, Macleod TD, Wilk KE, Paulos L, Andrews JR. Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther. 2012;42(3):208–20.  https://doi.org/10.2519/jospt.2012.3768.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Tagesson S, Oberg B, Kvist J. Tibial translation and muscle activation during rehabilitation exercises 5 weeks after anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2010;20(1):154–64.  https://doi.org/10.1111/j.1600-0838.2009.00903.x.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Toutoungi DE, Lu TW, Leardini A, Catani F, O’Connor JJ. Cruciate ligament forces in the human knee during rehabilitation exercises. Clin Biomech. 2000;15(3):176–87.CrossRefGoogle Scholar
  133. 133.
    Ohkoshi Y, Yasuda K, Kaneda K, Wada T, Yamanaka M. Biomechanical analysis of rehabilitation in the standing position. Am J Sports Med. 1991;19(6):605–11.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Kulas AS, Hortobagyi T, DeVita P. Trunk position modulates anterior cruciate ligament forces and strains during a single-leg squat. Clin Biomech. 2012;27(1):16–21.  https://doi.org/10.1016/j.clinbiomech.2011.07.009.CrossRefGoogle Scholar
  135. 135.
    Perry MC, Morrissey MC, King JB, Morrissey D, Earnshaw P. Effects of closed versus open kinetic chain knee extensor resistance training on knee laxity and leg function in patients during the 8- to 14-week post-operative period after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2005;13(5):357–69.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Beynnon BD, Uh BS, Johnson RJ, Abate JA, Nichols CE, Fleming BC, Poole AR, Roos H. Rehabilitation after anterior cruciate ligament reconstruction. A prospective, randomized, double-blind comparison of programs administered over 2 different time periods. Am J Sports Med. 2005;33(3):347–59.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Mikkelsen C, Werner S, Eriksson E. Closed kinetic chain alone compared to combined open and closed kinetic chain exercises for quadriceps strengthening after anterior cruciate ligament reconstruction with respect to return to sports: a prospective matched follow-up study. Knee Surg Sports Traumatol Arthrosc. 2000;8(6):337–42.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Heijne A, Werner S. Early versus late start of open kinetic chain quadriceps exercises after ACL reconstruction with patellar tendon or hamstring grafts: a prospective randomized outcome study. Knee Surg Sports Traumatol Arthrosc. 2007;15(4):402–14.  https://doi.org/10.1007/s00167-006-0246-z.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Shaw T, Williams MT, Chipchase LS. Do early quadriceps exercises affect the outcome of ACL reconstruction? A randomised controlled trial. Aust J Physiother. 2005;51(1):9–17.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Begalle RL, Distefano LJ, Blackburn T, Padua DA. Quadriceps and hamstrings coactivation during common therapeutic exercises. J Athl Train. 2012;47(4):396–405.  https://doi.org/10.4085/1062-6050-47.4.01.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Farrokhi S, Pollard CD, Souza RB, Chen YJ, Reischl S, Powers CM. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. J Orthop Sports Phys Ther. 2008;38(7):403–9.  https://doi.org/10.2519/jospt.2008.2634.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Ayotte NW, Stetts DM, Keenan G, Greenway EH. Electromyographical analysis of selected lower extremity muscles during 5 unilateral weight-bearing exercises. J Orthop Sports Phys Ther. 2007;37(2):48–55.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Ekstrom RA, Donatelli RA, Carp KC. Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J Orthop Sports Phys Ther. 2007;37(12):754–62.  https://doi.org/10.2519/jospt.2007.2471.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Matheson JW, Kernozek TW, Fater DC, Davies GJ. Electromyographic activity and applied load during seated quadriceps exercises. Med Sci Sports Exerc. 2001;33(10):1713–25.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Stensdotter AK, Hodges PW, Mellor R, Sundelin G, Hager-Ross C. Quadriceps activation in closed and in open kinetic chain exercise. Med Sci Sports Exerc. 2003;35(12):2043–7.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Beutler AI, Cooper LW, Kirkendall DT, Garrett WE Jr. Electromyographic analysis of single-leg, closed chain exercises: implications for rehabilitation after anterior cruciate ligament reconstruction. J Athl Train. 2002;37(1):13–8.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Kvist J, Gillquist J. Sagittal plane knee translation and electromyographic activity during closed and open kinetic chain exercises in anterior cruciate ligament-deficient patients and control subjects. Am J Sports Med. 2001;29(1):72–82.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Kvist J, Karlberg C, Gerdle B, Gillquist J. Anterior tibial translation during different isokinetic quadriceps torque in anterior cruciate ligament deficient and nonimpaired individuals. J Orthop Sports Phys Ther. 2001;31(1):4–15.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Wilk KE, Escamilla RF, Fleisig GS, Barrentine SW, Andrews JR, Boyd ML. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am J Sports Med. 1996;24(4):518–27.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Heckmann TP, Noyes FR, Barber-Westin S. Rehabilitation after ACL reconstruction. In: Noyes FR, Barber-Westin SD, editors. ACL injuries in the female athlete. 2nd ed. New York: Springer; 2018. p. 505–35.  https://doi.org/10.1007/978-3-662-56558-2_22.CrossRefGoogle Scholar
  151. 151.
    Gerber JP, Marcus RL, Dibble LE, Greis PE, LaStayo PC. Early application of negative work via eccentric ergometry following anterior cruciate ligament reconstruction: a case report. J Orthop Sports Phys Ther. 2006;36(5):298–307.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Gerber JP, Marcus RL, Dibble LE, Greis PE, Burks RT, Lastayo PC. Safety, feasibility, and efficacy of negative work exercise via eccentric muscle activity following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2007;37(1):10–8.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther. 2003;33(10):557–71.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Gerber JP, Marcus RL, Dibble LE, Greis PE, Burks RT, LaStayo PC. Effects of early progressive eccentric exercise on muscle structure after anterior cruciate ligament reconstruction. J Bone Joint Surg. 2007;89(3):559–70.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Gerber JP, Marcus RL, Dibble LE, Greis PE, Burks RT, LaStayo PC. Effects of early progressive eccentric exercise on muscle size and function after anterior cruciate ligament reconstruction: a 1-year follow-up study of a randomized clinical trial. Phys Ther. 2009;89(1):51–9.  https://doi.org/10.2522/ptj.20070189.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Brasileiro JS, Pinto OM, Avila MA, Salvini TF. Functional and morphological changes in the quadriceps muscle induced by eccentric training after ACL reconstruction. Rev Bras Fisioter. 2011;15(4):284–90.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Papandreou M, Billis E, Papathanasiou G, Spyropoulos P, Papaioannou N. Cross-exercise on quadriceps deficit after ACL reconstruction. J Knee Surg. 2013;26(1):51–8.  https://doi.org/10.1055/s-0032-1313744.CrossRefPubMedGoogle Scholar
  158. 158.
    Barber-Westin S, Noyes FR. Blood flow-restricted training for lower extremity muscle weakness due to knee pathology: a systematic review. Sports Health. 2018;11(1):69–83.  https://doi.org/10.1177/1941738118811337.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Ohta H, Kurosawa H, Ikeda H, Iwase Y, Satou N, Nakamura S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand. 2003;74(1):62–8.  https://doi.org/10.1080/00016470310013680.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):2035–9.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Iversen E, Rostad V, Larmo A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Health Sci. 2016;5:115–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Wilk KE. Restoration of proprioception and neuromuscular control following ACL injury and surgery. In: Noyes FR, Barber-Westin SD, editors. ACL injuries in the female athlete: causes, impacts, and conditioning programs. 2nd ed. New York: Springer; 2018.Google Scholar
  163. 163.
    Muaidi QI, Nicholson LL, Refshauge KM, Adams RD, Roe JP. Effect of anterior cruciate ligament injury and reconstruction on proprioceptive acuity of knee rotation in the transverse plane. Am J Sports Med. 2009;37(8):1618–26.  https://doi.org/10.1177/0363546509332429.CrossRefPubMedGoogle Scholar
  164. 164.
    Magyar MO, Knoll Z, Kiss RM. Effect of medial meniscus tear and partial meniscectomy on balancing capacity in response to sudden unidirectional perturbation. J Electromyogr Kinesiol. 2012;22(3):440–5.  https://doi.org/10.1016/j.jelekin.2012.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Malliou P, Gioftsidou A, Pafis G, Rokka S, Kofotolis N, Mavromoustakos S, Godolias G. Proprioception and functional deficits of partial meniscectomized knees. Eur J Phys Rehabil Med. 2012;48(2):231–6.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Goetschius J, Kuenze CM, Saliba S, Hart JM. Reposition acuity and postural control after exercise in anterior cruciate ligament reconstructed knees. Med Sci Sports Exerc. 2013;45(12):2314–21.  https://doi.org/10.1249/MSS.0b013e31829bc6ae.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Alonso AC, Greve JM, Camanho GL. Evaluating the center of gravity of dislocations in soccer players with and without reconstruction of the anterior cruciate ligament using a balance platform. Clinics. 2009;64(3):163–70.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Howells BE, Ardern CL, Webster KE. Is postural control restored following anterior cruciate ligament reconstruction? A systematic review. Knee Surg Sports Traumatol Arthrosc. 2011;19(7):1168–77.  https://doi.org/10.1007/s00167-011-1444-x.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Webster KA, Gribble PA. Time to stabilization of anterior cruciate ligament-reconstructed versus healthy knees in National Collegiate Athletic Association Division I female athletes. J Athl Train. 2010;45(6):580–5.  https://doi.org/10.4085/1062-6050-45.6.580.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Delahunt E, Sweeney L, Chawke M, Kelleher J, Murphy K, Patterson M, Prendiville A. Lower limb kinematic alterations during drop vertical jumps in female athletes who have undergone anterior cruciate ligament reconstruction. J Orthop Res. 2012;30(1):72–8.  https://doi.org/10.1002/jor.21504.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Mohammadi F, Salavati M, Akhbari B, Mazaheri M, Khorrami M, Negahban H. Static and dynamic postural control in competitive athletes after anterior cruciate ligament reconstruction and controls. Knee Surg Sports Traumatol Arthrosc. 2012;20(8):1603–10.  https://doi.org/10.1007/s00167-011-1806-4.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Negahban H, Ahmadi P, Salehi R, Mehravar M, Goharpey S. Attentional demands of postural control during single leg stance in patients with anterior cruciate ligament reconstruction. Neurosci Lett. 2013;556:118–23.  https://doi.org/10.1016/j.neulet.2013.10.022.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Yaru NC, Daniel DM, Penner D. The effect of tibial attachment site on graft impingement in an anterior cruciate ligament reconstruction. Am J Sports Med. 1992;20(2):217–20.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Romano VM, Graf BK, Keene JS, Lange RH. Anterior cruciate ligament reconstruction. The effect of tibial tunnel placement on range of motion. Am J Sports Med. 1993;21(3):415–8.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Shelbourne KD, Patel DV. Treatment of limited motion after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 1999;7(2):85–92.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Markolf KL, Hame S, Hunter DM, Oakes DA, Zoric B, Gause P, Finerman GA. Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft. J Orthop Res. 2002;20(5):1016–24.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Simmons R, Howell SM, Hull ML. Effect of the angle of the femoral and tibial tunnels in the coronal plane and incremental excision of the posterior cruciate ligament on tension of an anterior cruciate ligament graft: an in vitro study. J Bone Joint Surg. 2003;85-A(6):1018–29.CrossRefGoogle Scholar
  178. 178.
    Fu FH, Bennett CH, Ma CB, Menetrey J, Lattermann C. Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations. Am J Sports Med. 2000;28(1):124–30.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Jackson DW, Schaefer RK. Cyclops syndrome: loss of extension following intraarticular anterior cruciate ligament reconstruction. Arthroscopy. 1990;6(3):171–8.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Petsche TS, Hutchinson MR. Loss of extension after reconstruction of the anterior cruciate ligament. J Am Acad Orthop Surg. 1999;7(2):119–27.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Millett PJ, Wickiewicz TL, Warren RF. Motion loss after ligament injuries to the knee. Part I: causes. Am J Sports Med. 2001;29(5):664–75.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Austin JC, Phornphutkul C, Wojtys EM. Loss of knee extension after anterior cruciate ligament reconstruction: effects of knee position and graft tensioning. J Bone Joint Surg. 2007;89(7):1565–74.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Noyes FR, Barber-Westin SD. Prevention and treatment of knee arthrofibrosis. In: Noyes FR, Barber-Westin SD, editors. Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 1059–102.  https://doi.org/10.1016/b978-0-323-32903-3.00038-x.CrossRefGoogle Scholar
  184. 184.
    Mauro CS, Irrgang JJ, Williams BA, Harner CD. Loss of extension following anterior cruciate ligament reconstruction: analysis of incidence and etiology using IKDC criteria. Arthroscopy. 2008;24(2):146–53.  https://doi.org/10.1016/j.arthro.2007.08.026.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Shelbourne KD, Johnson GE. Outpatient surgical management of arthrofibrosis after anterior cruciate ligament surgery. Am J Sports Med. 1994;22(2):192–7.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Shelbourne KD, Wilckens JH, Mollabashy A, DeCarlo M. Arthrofibrosis in acute anterior cruciate ligament reconstruction. The effect of timing of reconstruction and rehabilitation. Am J Sports Med. 1991;19(4):332–6.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Strum GM, Friedman MJ, Fox JM, Ferkel RD, Dorey FH, Del Pizzo W, Snyder SJ. Acute anterior cruciate ligament reconstruction. Analysis of complications. Clin Orthop Relat Res. 1990;253:184–9.Google Scholar
  188. 188.
    Wasilewski SA, Covall DJ, Cohen S. Effect of surgical timing on recovery and associated injuries after anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21(3):338–42.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Mohtadi NG, Webster-Bogaert S, Fowler PJ. Limitation of motion following anterior cruciate ligament reconstruction. A case-control study. Am J Sports Med. 1991;19(6):620–4.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Shelbourne KD, Foulk DA. Timing of surgery in acute anterior cruciate ligament tears on the return of quadriceps muscle strength after reconstruction using an autogenous patellar tendon graft. Am J Sports Med. 1995;23(6):686–9.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Noyes FR, Barber-Westin SD. Diagnosis and treatment of complex regional pain syndrome. In: Noyes FR, Barber-Westin SD, editors. Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 1122–60.  https://doi.org/10.1016/b978-0-323-32903-3.00040-8.CrossRefGoogle Scholar
  192. 192.
    Turner-Stokes L, Goebel A. Complex regional pain syndrome in adults: concise guidance. Clin Med. 2011;11(6):596–600.CrossRefGoogle Scholar
  193. 193.
    Ogilvie-Harris DJ, Roscoe M. Reflex sympathetic dystrophy of the knee. J Bone Joint Surg. 1987;69(5):804–6.CrossRefGoogle Scholar
  194. 194.
    Poehling GG, Pollock FE Jr, Koman LA. Reflex sympathetic dystrophy of the knee after sensory nerve injury. Arthroscopy. 1988;4(1):31–5.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Poplawski ZJ, Wiley AM, Murray JF. Post-traumatic dystrophy of the extremities. J Bone Joint Surg. 1983;65(5):642–55.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Jupiter JB, Seiler JG, Zienowicz R. Sympathetic maintained pain (causalgia) associated with a demonstrable peripheral-nerve lesion. Operative treatment. J Bone Joint Surg. 1994;76(9):1376–84.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Schwartzman RJ, Erwin KL, Alexander GM. The natural history of complex regional pain syndrome. Clin J Pain. 2009;25(4):273–80.  https://doi.org/10.1097/AJP.0b013e31818ecea5.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Vaneker M, Wilder-Smith OH, Schrombges P, Oerlemans HM. Impairments as measured by ISS do not greatly change between one and eight years after CRPS 1 diagnosis. Eur J Pain. 2006;10(7):639–44.  https://doi.org/10.1016/j.ejpain.2005.10.003.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    de Mos M, Huygen FJ, van der Hoeven-Borgman M, Dieleman JP, Ch Stricker BH, Sturkenboom MC. Outcome of the complex regional pain syndrome. Clin J Pain. 2009;25(7):590–7.  https://doi.org/10.1097/AJP.0b013e3181a11623.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Harden RN, Bruehl S, Stanton-Hicks M, Wilson PR. Proposed new diagnostic criteria for complex regional pain syndrome. Pain Med. 2007;8(4):326–31.  https://doi.org/10.1111/j.1526-4637.2006.00169.x.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Harden RN, Bruehl S, Perez RS, Birklein F, Marinus J, Maihofner C, Lubenow T, Buvanendran A, Mackey S, Graciosa J, Mogilevski M, Ramsden C, Chont M, Vatine JJ. Validation of proposed diagnostic criteria (the “budapest criteria”) for complex regional pain syndrome. Pain. 2010;150(2):268–74.  https://doi.org/10.1016/j.pain.2010.04.030.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Maihofner C, Seifert F, Markovic K. Complex regional pain syndromes: new pathophysiological concepts and therapies. Eur J Neurol. 2010;17(5):649–60.  https://doi.org/10.1111/j.1468-1331.2010.02947.x.CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Oaklander AL, Fields HL. Is reflex sympathetic dystrophy/complex regional pain syndrome type I a small-fiber neuropathy? Ann Neurol. 2009;65(6):629–38.  https://doi.org/10.1002/ana.21692.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Goebel A. Complex regional pain syndrome in adults. Rheumatology. 2011;50(10):1739–50.  https://doi.org/10.1093/rheumatology/ker202.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    de Mos M, Sturkenboom MC, Huygen FJ. Current understandings on complex regional pain syndrome. Pain Pract. 2009;9(2):86–99.  https://doi.org/10.1111/j.1533-2500.2009.00262.x.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    van Eijs F, Stanton-Hicks M, Van Zundert J, Faber CG, Lubenow TR, Mekhail N, van Kleef M, Huygen F. Evidence-based interventional pain medicine according to clinical diagnoses. 16. Complex regional pain syndrome. Pain Pract. 2011;11(1):70–87.  https://doi.org/10.1111/j.1533-2500.2010.00388.x.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Beerthuizen A, van 't Spijker A, Huygen FJ, Klein J, de Wit R. Is there an association between psychological factors and the complex regional pain syndrome type 1 (CRPS1) in adults? A systematic review. Pain. 2009;145(1-2):52–9.  https://doi.org/10.1016/j.pain.2009.05.003.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Schwenkreis P, Maier C, Tegenthoff M. Functional imaging of central nervous system involvement in complex regional pain syndrome. AJNR Am J Neuroradiol. 2009;30(7):1279–84.  https://doi.org/10.3174/ajnr.A1630.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Dowd GS, Hussein R, Khanduja V, Ordman AJ. Complex regional pain syndrome with special emphasis on the knee. J Bone Joint Surg. 2007;89(3):285–90.  https://doi.org/10.1302/0301-620X.89B3.18360.CrossRefGoogle Scholar
  210. 210.
    Noyes FR, Barber-Westin SD. Posterolateral knee reconstruction with an anatomical bone-patellar tendon-bone reconstruction of the fibular collateral ligament. Am J Sports Med. 2007;35(2):259–73.  https://doi.org/10.1177/0363546506293704.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Noyes FR, Barber-Westin S. Posterior cruciate ligament replacement with a two-strand quadriceps tendon-patellar bone autograft and a tibial inlay technique. J Bone Joint Surg. 2005;87(6):1241–52.  https://doi.org/10.2106/JBJS.D.02272.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Heckmann TP, Barber-Westin SD, Noyes FR. Meniscal repair and transplantation: indications, techniques, rehabilitation, and clinical outcome. J Orthop Sports Phys Ther. 2006;36(10):795–814.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cincinnati Sports Medicine and Orthopaedic CenterThe Noyes Knee InstituteCincinnatiUSA
  2. 2.Noyes Knee InstituteCincinnatiUSA

Personalised recommendations