Advertisement

Environmental Conditions: Cold

  • Michael TiptonEmail author
Chapter

Abstract

The impact of environmental conditions is often overlooked in sport, where the pre-occupation is generally with nutrition and training. However, inappropriate preparation and strategy for the thermal conditions of an event can not only significantly impact on performance, but it can also threaten athlete health and safety. Thus, those organising, supervising as well as competing in triathlon events should be well-versed in the threats associated with the thermal conditions of a triathlon and know how to mitigate and treat them. With this in mind, in this chapter we examine the challenge of cold for triathlon, concentrating on the swim, T1 and the early part of the cycle. We provide advice to help athletes and organisers maintain performance and avoid injury through preparation, protection and event organisation.

Keywords

Drowning Sudden cardiac death Physical incapacitation Hypothermia Performance Treatment 

References

  1. 1.
    Castellani JW, Tipton MJ. Cold stress effects on exercise tolerance and exercise performance. Comprehensive physiology, American physiological society section 14. Handbook of physiology, environmental physiology. Oxford: Oxford University Press; 2015. p. 433–69.Google Scholar
  2. 2.
    Shattock M, Tipton MJ. “Autonomic conflict”: a different way to die on immersion in cold water? J Physiol. 2012;590(Pt 14):3219–30.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tipton MJ. The initial responses to cold-water immersion in man. Editorial review. Clin Sci. 1989;77:581–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tipton MJ. Cold water immersion. In: Tipton MJ, Wooler A, editors. The science of beach lifeguarding. Abingdon: Taylor & Francis; 2016.CrossRefGoogle Scholar
  5. 5.
    Golden FSC, Hardcastle PT, Pollard CE, Tipton MJ. Hyperventilation and swim failure in man in cold water. J Physiol. 1986;378:94P.Google Scholar
  6. 6.
    Keatinge WR, Mcllroy MB, Goldfien A. Cardiovascular responses to ice-cold showers. J Appl Physiol. 1964;19:1145–50.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Baker S, Atha J. Canoeist’s disorientation following cold immersion. Br J Sports Med. 1981;15:111–5.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Datta A, Tipton MJ. Respiratory responses to cold water immersion: neural pathways, interactions and clinical consequences. J Appl Physiol. 2006;100(6):2057–64.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Saycell J, Lomax M, Massey H, Tipton MJ. Scientific rationale for changing lower water temperature limits for triathlon racing to 12 °C with wetsuits and 16 °C without. Br J Sports Med. 2018;52:702–8.  https://doi.org/10.1136/bjsports-2017-098914.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tipton MJ, Stubbs DA, Elliott DH. Human initial responses to immersion in cold water at 3 temperatures and following hyperventilation. J Appl Physiol. 1991;70(1):317–22.CrossRefPubMedGoogle Scholar
  11. 11.
    USA Triathlon. USA triathlon fatality incidents study. Colorado Springs, CO: USA Triathlon; 2012. p. 1–14. https://www.teamusa.org/USA-Triathlon/News/Articles-and-Releases/2012/October/25/102512-Medical-Panel-Report.Google Scholar
  12. 12.
    Tipton MJ, Kelleher P, Golden FSC. Supraventricular arrhythmias following breath-hold submersions in cold water. Undersea Hyperb Med. 1994;21(3):305–13.PubMedGoogle Scholar
  13. 13.
    Lampert R, Joska T, Burg MM, Batsford WP, McPherson CA, Jain D. Emotional and physical precipitants of ventricular arrhythmia. Circulation. 2002;106:1800–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Rainville P, Bechara A, Naqvi N, et al. Basic emotions are associated with distinct patterns of cardiorespiratory activity. Int J Psychophysiol. 2006;61:5–18.CrossRefPubMedGoogle Scholar
  15. 15.
    Tipton MJ. Sudden cardiac death during open water swimming. Br J Sports Med. 2013;48(15):1134–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Rennie DW, Covino BG, Howell BJ, Song SH, Kang BS, Hong SK. Physical insulation of Korean diving women. J Appl Physiol. 1962;17:961–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Veicsteinas A, Ferretti G, Rennie DW. Superficial shell insulation in resting and exercising men in cold water. J Appl Physiol. 1982;52:1557–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Šrámek P, Šimečková M, Janský L, Šavlíková J, Vybiral S. Human physiological responses to immersion into water of different temperatures. Eur J Appl Physiol. 2000;81:436–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Dressendorfer RH, Morlock JF, Baker DG, Hong SK. Effect of head-out water immersion on cardiorespiratory responses to maximal cycling exercise. Undersea Biomed Res. 1976;3:177–87.PubMedGoogle Scholar
  20. 20.
    Rintamaki H, Makinen T, Oksa J, Latvala J. Water balance and physical performance in cold. Arctic Med Res. 1995;54(Suppl 2):32–6.PubMedGoogle Scholar
  21. 21.
    Drinkwater EJ. Effects of peripheral cooling on characteristics of local muscle. In: Marino FE, editor. Thermoregulation and human performance. Physiological and biological aspects. Med Sports Sci. Basel: Karger; 2008. p. 74–88.CrossRefGoogle Scholar
  22. 22.
    Hunter J, Kerr EH, Whillans MG. The relation between joint stiffness upon exposure to cold and the characteristics of synovial fluid. Can J Med Sci. 1952;30:367–77.PubMedGoogle Scholar
  23. 23.
    Vincent MJ, Tipton MJ. The effects of cold immersion and hand protection on grip strength. Aviat Space Environ Med. 1988;59:738–41.PubMedGoogle Scholar
  24. 24.
    Basbaum CB. Induced hypothermia in peripheral nerve: electron microscopic and electrophysiological observations. J Neurocytol. 1973;2:171–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Bigland-Ritchie B, Thomas CK, Rice CL, Howarth JV, Woods JJ. Muscle temperature, contractile speed, and motorneurones firing rates during human voluntary contractions. J Appl Physiol. 1992;73:2457–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Clarke RS, Hellon RF, Lind AR. The duration of sustained contractions of the human forearm at different muscle temperatures. J Physiol. 1958;143:454–73.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Douglas WW, Malcolm JL. The effect of localized cooling on conduction in cat nerves. J Physiol. 1955;130:53–71.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    de Jong RH, Hershey WN, Wagman IH. Nerve conduction velocity during hypothermia in man. Anesthesiology. 1966;27:805–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Chatfield PO, Battista AF, Lyman CP, Garcia JP. Effects of cooling on nerve conduction in a hibernator (golden hamster) and non-hibernator (albino rat). Am J Phys. 1948;155:179–85.CrossRefGoogle Scholar
  30. 30.
    Drinkwater EJ, Behm DG. Effects of 22°C muscle temperature on voluntary and evoked muscle properties during and after high-intensity exercise. Appl Physiol Nutr Metab. 2007;32:1043–51.CrossRefGoogle Scholar
  31. 31.
    Bergh U, Ekblom B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand. 1979;107:33–7.CrossRefGoogle Scholar
  32. 32.
    Bergh U, Ekblom B. Physical performance and peak aerobic power at different body temperatures. J Appl Physiol. 1979;46(5):885–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Davies CTM, Young K. Effect of temperature on the contractile properties and muscle power of triceps surae in humans. J Appl Physiol. 1983;55:191–5.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Clark RE. The limiting hand skin temperature for unaffected manual performance in the cold. J Appl Psychol. 1961;45:193–4.CrossRefGoogle Scholar
  35. 35.
    Heus R, Daanen HAM, Havenith G. Physiological criteria for functioning of hands in the cold. Appl Ergonomics. 1995;26:5–13.CrossRefGoogle Scholar
  36. 36.
    Giesbrecht GG, Wu MP, White MD, Johnston CE, Bristow GK. Isolated effects of peripheral arm and central body cooling on arm performance. Aviat Space Environ Med. 1995;66:968–75.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tipton M, Eglin C, Gennser M, Golden F. Immersion death and deterioration in swimming performance in cold water. Lancet. 1999;354:626–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wallingford R, Ducharme MB, Pommier E. Factors limiting cold-water swimming distance while wearing personal flotation devices. Eur J Appl Physiol. 2000;82:24–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lounsbury DS, Ducharme MB. Arm insulation and swimming in cold water. Eur J Appl Physiol. 2008;104:159–74.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Taylor NAS, Tipton MJ, Kenny GP. Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol. 2014;46:72–101.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Golden FSC, Hervey GR, Tipton MJ. Circum-rescue collapse: collapse, sometimes fatal, associated with rescue of immersion victims. J R Navy Med Serv. 1991;77:139–49.Google Scholar
  42. 42.
    Giesbrecht GG, Bristow GK. A second postcooling afterdrop: more evidence for a convection mechanism. J Appl Physiol. 1985;73(4):1253–8.CrossRefGoogle Scholar
  43. 43.
    Hong SI, Nadel ER. Thermogenic control during exercise in a cold environment. J Appl Physiol. 1979;47(5):1084–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Golden FSC, Tipton MJ. Essentials of sea survival. Champaign, IL: Human Kinetics; 2002. isbn:0-7360-0215-4.Google Scholar
  45. 45.
    Rennie DW, Park Y, Veicsteinas A, Pendergast D. Metabolic and circulatory adaptation to cold water stress. In: Cerretelli P, Whipp B, editors. Exercise bioenergetics and gas exchange. Amsterdam: Elsevier; 1980. p. 315–21.Google Scholar
  46. 46.
    Pendergast DR. The effect of body cooling on oxygen transport during exercise. Med Sci Sports Exerc. 1988;20:S171–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Holmer I, Bergh U. Metabolic and thermal response to swimming in water at varying temperatures. J Appl Physiol. 1974;37:702–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Jacobs I, Romet TT, Kerrigan-Brown D. Muscle glycogen depletion during exercise at 9°C and 21°C. Eur J Appl Physiol. 1985;54:35–9.CrossRefGoogle Scholar
  49. 49.
    McArdle WD, Magel JR, Lesmes GR, Pechar GS. Metabolic and cardiovascular adjustments to work in air and water at 18, 25 and 33°C. J Appl Physiol. 1976;40:85–90.CrossRefPubMedGoogle Scholar
  50. 50.
    Costill DL, Cahill PJ, Eddy D. Metabolic responses to submaximal exercise in three water temperatures. J Appl Physiol. 1967;22:628–32.CrossRefPubMedGoogle Scholar
  51. 51.
    Enander A. Effects of moderate cold on performance of psychomotor and cognitive tasks. Ergonomics. 1987;30:1431–45.CrossRefPubMedGoogle Scholar
  52. 52.
    Muller MD, Gunstad J, Alosco ML, Miller LA, Updegraff J, Spitznagel MB, Glickman EL. Acute cold exposure and cognitive function: evidence for sustained impairment. Ergonomics. 2012;55(7):792–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    O’Brien C, Mahoney C, Tharion WJ, Sils IV, Castellani JW. Dietary tyrosine benefits cognitive and psychomotor performance during body cooling. Physiol Behav. 2007;90(2–3):301–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Montgomery RE, Hartley GL, Tyler CJ, Cheung SS. Effect of segmental, localized lower limb cooling on dynamic balance. Med Sci Sports Exerc. 2015;47:66–73.CrossRefPubMedGoogle Scholar
  55. 55.
    Muller MD, Ryan EJ, Bellar DM, Kim CH, Blankfield RP, Muller SM, Glickman EL. The influence of interval versus continuous exercise on thermoregulation, torso hemodynamics, and finger dexterity in the cold. Eur J Appl Physiol. 2010;109:857–67.CrossRefPubMedGoogle Scholar
  56. 56.
    Saycell J, Lomax M, Massey H, Tipton MJ. Investigation into lower water temperatures for open water swim racing. University of Portsmouth report for FINA, IOC and ITU. 2015.Google Scholar
  57. 57.
    Ito R, Nakano M, Yamane M, Amano M, Matsumoto T. Effects of rain on energy metabolism while running in a cold environment. Int J Sports Med. 2013;34:707–11.CrossRefPubMedGoogle Scholar
  58. 58.
    Pugh LGCE. Deaths from exposure on four inns walking competition. Lancet. 1964;1964(1):1210–2.CrossRefGoogle Scholar
  59. 59.
    Thompson RL, Hayward JS. Wet-cold exposure and hypothermia: thermal and metabolic responses to prolonged exercise in rain. J Appl Physiol. 1996;81(3):1128–37.CrossRefPubMedGoogle Scholar
  60. 60.
    Triathlon. ITU competition rules. 2017. pp. 8–12. http://www.triathlon.org/uploads/docs/itusport_competition-rules_2017.pdf. Accessed 18 May 2017.
  61. 61.
    Golden FSC, Tipton MJ. Human adaptation to repeated cold immersions. J Physiol. 1988;396:349–63.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Tipton MJ, Mekjavic IB, Eglin CM. Permanence of the habituation of the initial responses to cold-water immersion. Eur J Appl Physiol. 2000;83:17–21.CrossRefPubMedGoogle Scholar
  63. 63.
    Tipton MJ, Golden FSC, Mekjavic IB, Franks CM. Temperature dependence of habituation of the initial responses to cold water immersion. Eur J Appl Physiol. 1998;78:253–7.CrossRefGoogle Scholar
  64. 64.
    Eglin C, Tipton M. Repeated cold showers as a method of habituating humans to the initial responses to cold water immersion. Eur J Appl Physiol. 2005;93:624–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Barwood MJ, Dalzell J, Datta A, Thelwell R, Tipton M. Breath-hold performance during cold water immersion: effects of psychological skills training. Aviat Space Environ Med. 2006;77:1136–42.PubMedGoogle Scholar
  66. 66.
    Hayward MG, Keatinge WR. Roles of subcutaneous fat and thermoregulatory reflexes in determinin g ability to stabilize body temperature in water. J Physiol. 1981;320:229–51.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tipton MJ, Bradford C. Moving in extreme environments: open water swimming in cold and warm water. Extr Physiol Med. 2014;3:12. http://www.extremephysiolmed.com/content/3/1/12.CrossRefGoogle Scholar
  68. 68.
    Truhlář A, Deakin CD, Soar J, Khalifa GEA, Alfonzo A, Bierens JJLM, et al. European Resuscitation Council guidelines for resuscitation 2015: section 4. Cardiac arrest in special circumstances. Resuscitation. 2015;95:148–201.CrossRefPubMedGoogle Scholar
  69. 69.
    Schmidt AC, Sempsrott JR, Hawkins SC, Arastu AS, Cushing TA, Auerbach PS. Wilderness Medical Society practice guidelines for the prevention and treatment of drowning. Wilderness Environ Med. 2016;25:425–45.Google Scholar
  70. 70.
    Handley AJ, Golden FSC, Keatinge WR, Lloyd EL, Tipton MJ. Report of the working party on out of hospital management of hypothermia. London: Medical Commission on Accident Prevention, Royal College of Surgeons; 1992.Google Scholar
  71. 71.
    Nielsen HK, Toft P, Koch J, Andersen PK. Hypothermic patients admitted to an intensive care unit: a fifteen year survey. Dan Med Bull. 1992;39(2):190–3.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Paal P, Gordon L, Strapazzon G, Maeder MB, Putzer G, Walpoth B, Wanscher M, Brown D, Holzer M, Broessner G, Brugger H. Accidental hypothermia: an update. Scand J Trauma Resusc Emerg Med. 2016;24:111.  https://doi.org/10.1186/s13049-016-0303-7.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Zafren K, Giesbrecht GG, Danzl DF, Brugger H, Sagalyn EB, Walpoth B, Weiss EA, Auerbach PS, McIntosh SE, Némethy M, McDevitt M, Dow J, Schoene RB, Rodway GW, Hackett PH, Bennett BL, Grissom CK. Wilderness Medical Society practice guidelines for the out-of-hospital evaluation and treatment of accidental hypothermia. Wilderness Environ Med. 2014;25:425–45.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Extreme Environments Laboratory, DSESUniversity of PortsmouthPortsmouthUK

Personalised recommendations