Physiological Requirements of the Different Distances of Triathlon

  • Avish P. Sharma
  • Julien D. PériardEmail author


Triathlon is a sport consisting of swimming, cycling and running performed consecutively over different distances, with each discipline connected by a brief transition. The distances over which triathlon racing occurs range from mixed-team relays to sprint, Olympic, long distance, half-Ironman and Ironman events. Within these events the swim (300–4000 m), cycle (7–180 km) and run (1.6–42.2 km) segments differ considerably. As a result, specific physiological requirements dictate success in the various forms of triathlon. Moreover, certain rules and regulations, such as the ability to draft behind competitors, affect the style of racing and consequently the physiological demands. This chapter will address these physiological requirements and the responses associated with the different distances of triathlon, from sprint to Ironman.


Mixed-team relay Sprint Olympic Long distance Half-Ironman Ironman Energy systems Drafting Non-drafting Pacing Performance 


  1. 1.
    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725–41.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baker JS, McCormick MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab. 2010
  3. 3.
    Greenhaff PL, Nevill ME, Soderlund K, Bodin K, Boobis LH, Williams C, Hultman E. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol. 1994;478(1):149–55.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Smith J, Hill DW. Contribution of energy systems during a Wingate power test. Br J Sports Med. 1991;25(4):196–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Peeling P, Landers G. Swimming intensity during triathlon: a review of current research and strategies to enhance race performance. J Sports Sci. 2009;27(10):1079–85.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bernard T, Hausswirth C, Le Meur Y, Bignet F, Dorel S, Brisswalter J. Distribution of power output during the cycling stage of a triathlon world cup. Med Sci Sports Exerc. 2009;41(6):1296–302.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vleck VE, Bentley DJ, Millet GP, Bürgi A. Pacing during an elite Olympic distance triathlon: comparison between male and female competitors. J Sci Med Sport. 2008;11(4):424–32.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Millet GP, Vleck VE, Bentley DJ. Physiological requirements in triathlon. J Hum Sport Exerc. 2011;6(2):184–204.CrossRefGoogle Scholar
  9. 9.
    Bentley DJ, Millet GP, Vleck VE, McNaughton LR. Specific aspects of contemporary triathlon. Sports Med. 2002;32(6):345–59.CrossRefPubMedGoogle Scholar
  10. 10.
    Brisswalter J, Hausswirth C. Consequences of drafting on human locomotion: benefits on sports performance. Int J Sports Physiol Perform. 2008;3(1):3–15.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McCole SD, Claney K, Conte JC, Anderson R, Hagberg JM. Energy expenditure during bicycling. J Appl Physiol. 1990;68(2):748–53.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Faria EW, Parker DL, Faria IE. The science of cycling: factors affecting performance – part 2. Sports Med. 2005;35(4):313–37.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hausswirth C, Lehénaff D, Dréano P, Savonen K. Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon. Med Sci Sports Exerc. 1999;31(4):599–604.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chatard JC, Chollet D, Millet G. Performance and drag during drafting swimming in highly trained triathletes. Med Sci Sports Exerc. 1998;30(8):1276–80.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chollet D, Hue O, Auclair F, Millet G, Chatard JC. The effects of drafting on stroking variations during swimming in elite male triathletes. Eur J Appl Physiol. 2000;82(5–6):413–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hausswirth C, Vallier JM, Lehenaff D, Brisswalter J, Smith DA, Millet GR, Dreano PA. Effect of two drafting modalities in cycling on running performance. Med Sci Sports Exerc. 2001;33(3):485–92.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bentley DJ, Libicz S, Jougla A, Coste O, Manetta J, Chamari K, Millet GP. The effects of exercise intensity or drafting during swimming on subsequent cycling performance in triathletes. J Sci Med Sport. 2007;10(4):234–43.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wu SS, Peiffer JJ, Brisswalter J, Nosaka K, Abbiss CR. Factors influencing pacing in triathlon. Open Access J Sports Med. 2014;5:223.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Etxebarria N, Hunt J, Ingham S, Ferguson R. Physiological assessment of isolated running does not directly replicate running capacity after triathlon-specific cycling. J Sports Sci. 2014;32(3):229–38.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Delextrat A, Tricot V, Bernard T, Vercruyssen F, Hausswirth C, Brisswalter J. Drafting during swimming improves efficiency during subsequent cycling. Med Sci Sports Exerc. 2003;35(9):1612–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Vleck VE, Bürgi A, Bentley DJ. The consequences of swim, cycle, and run performance on overall result in elite Olympic distance triathlon. Int J Sports Med. 2006;27(01):43–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Bentley DJ, Cox GR, Green D, Laursen PB. Maximising performance in triathlon: applied physiological and nutritional aspects of elite and non-elite competitions. J Sci Med Sport. 2008;11(4):407–16.CrossRefPubMedGoogle Scholar
  23. 23.
    Poeller S. Success factors in the 2014 triathlon mixed relay world championships. 20th annual congress of the European College of Sports Science (ePoster). 2015.Google Scholar
  24. 24.
    Le Meur Y, Hausswirth C, Dorel S, Bignet F, Brisswalter J, Bernard T. Influence of gender on pacing adopted by elite triathletes during a competition. Eur J Appl Physiol. 2009;106(4):535–45.CrossRefPubMedGoogle Scholar
  25. 25.
    González-Haro C, González-de-Suso JM, Padulles JM, Drobnic F, Escanero JF. Physiological adaptation during short distance triathlon swimming and cycling sectors simulation. Physiol Behav. 2005;86(4):467–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Ofoghi B, Zeleznikow J, Macmahon C, Rehula J, Dwyer DB. Performance analysis and prediction in triathlon. J Sports Sci. 2016;34(7):607–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Thompson K, MacLaren D, Lees A, Atkinson G. The effect of even, positive and negative pacing on metabolic, kinematic and temporal variables during breaststroke swimming. Eur J Appl Physiol. 2003;88(4–5):438–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Etxebarria N, D’Auria S, Anson JM, Pyne DB, Ferguson RA. Variability in power output during cycling in international Olympic-distance triathlon. Int J Sports Physiol Perform. 2014b;9(4):732–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Abbiss CR, Quod MJ, Martin DT, Netto KJ, Nosaka K, Lee H, Surriano R, Bishop D, Laursen PB. Dynamic pacing strategies during the cycle phase of an Ironman triathlon. Med Sci Sports Exerc. 2006;38(4):726–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Hausswirth C, Le Meur Y, Bieuzen F, Brisswalter J, Bernard T. Pacing strategy during the initial phase of the run in triathlon: influence on overall performance. Eur J Appl Physiol. 2010;108(6):1115–23.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Meur YL, Bernard T, Dorel S, Abbiss CR, Honnorat G, Brisswalter J, Hausswirth C. Relationships between triathlon performance and pacing strategy during the run in an international competition. Int J Sports Physiol Perform. 2011;6(2):183–94.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Taylor D, Smith MF. Effects of deceptive running speed on physiology, perceptual responses, and performance during sprint-distance triathlon. Physiol Behav. 2014;133:45–52.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    García-Pinillos F, Cámara-Pérez JC, González-Fernández FT, Párraga-Montilla JA, Muñoz-Jiménez M, Latorre-Román PÁ. Physiological and neuromuscular response to a simulated sprint-distance triathlon: effect of age differences and ability level. J Strength Cond Res. 2016;30(4):1077–84.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Landers GJ, Blanksby BA, Ackland TR, Monson R. Swim positioning and its influence on triathlon outcome. Int J Exerc Sci. 2008;1(3):96.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Laursen PB. Long distance triathlon: demands, preparation and performance. J Hum Sport Exerc. 2011;6(2):247–63.CrossRefGoogle Scholar
  36. 36.
    Gollnick PD. Metabolism of substrates: energy substrate metabolism during exercise and as modified by training. Fed Proc. 1985;44(2):353–7.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab. 1993;265(3):E380–91.CrossRefGoogle Scholar
  38. 38.
    Frandsen J, Vest SD, Larsen S, Dela F, Helge JW. Maximal fat oxidation is related to performance in an ironman triathlon. Int J Sports Med. 2017;38(13):975–82.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Maunder E, Kilding AE, Plews DJ. Substrate metabolism during ironman triathlon: different horses on the same courses. Sports Med. 2018;18:1–8.Google Scholar
  40. 40.
    Millet GP, Dreano P, Bentley DJ. Physiological characteristics of elite short-and long-distance triathletes. Eur J Appl Physiol. 2003;88(4–5):427–30.CrossRefPubMedGoogle Scholar
  41. 41.
    Laursen PB, Rhodes EC, Langill RH, McKenzie DC, Taunton JE. Relationship of exercise test variables to cycling performance in an Ironman triathlon. Eur J Appl Physiol. 2002;87(4–5):433–40.CrossRefPubMedGoogle Scholar
  42. 42.
    Laursen PB, Knez WL, Shing CM, Langill RH, Rhodes EC, Jenkins DG. Relationship between laboratory-measured variables and heart rate during an ultra-endurance triathlon. J Sports Sci. 2005;23(10):1111–20.CrossRefPubMedGoogle Scholar
  43. 43.
    Barrero A, Chaverri D, Erola P, Iglesias X, Rodríguez F. Intensity profile during an ultra-endurance triathlon in relation to testing and performance. Int J Sports Med. 2014;35(14):1170–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Laursen PB, Rhodes EC. Factors affecting performance in an ultraendurance triathlon. Sports Med. 2001;31(3):195–209.CrossRefPubMedGoogle Scholar
  45. 45.
    Suriano R, Bishop D. Physiological attributes of triathletes. J Sci Med Sport. 2010;13(3):340–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Jeukendrup AE, Jentjens RL, Moseley L. Nutritional considerations in triathlon. Sports Med. 2005;35(2):163–81.CrossRefPubMedGoogle Scholar
  47. 47.
    Cox GR, Snow RJ, Burke LM. Race-day carbohydrate intakes of elite triathletes contesting Olympic-distance triathlon events. Int J Sport Nutr Exerc Metab. 2010;20(4):299–306.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Exercise and Sport ScienceGriffith UniversitySouthportAustralia
  2. 2.Triathlon AustraliaBurleigh HeadsAustralia
  3. 3.Research Institute for Sport and ExerciseUniversity of CanberraCanberraAustralia

Personalised recommendations