Advertisement

Airway Dysfunction in Elite Athletes

  • James O’Donovan
  • Michael Koehle
  • Don McKenzieEmail author
Chapter

Abstract

Training and competing in elite triathlon events challenge the limits of human performance. While it is generally felt that the respiratory system does not limit performance, several conditions exist during heavy physical work that may influence success. Exercise-induced arterial hypoxemia and expiratory flow limitation can occur in healthy athletes and may affect performance. Exercise-induced asthma and bronchoconstriction are common in sports with a major endurance component, as well as exposure to allergens, such as chlorine or air pollution. Diagnosis of respiratory conditions should be made with objective tests of respiratory function and the management of the athlete with asthma should follow current national or international guidelines. Education is an essential component; environmental control and the identification of triggers are also important. Warm up and individual pharmacotherapy are necessary. Athletes must comply with the WADA code for use of all medications.

Keywords

Asthma Exercise-induced bronchoconstriction Exercise-induced laryngeal obstruction Immersion pulmonary edema Elite athletes 

References

  1. 1.
    McKenzie DC. Respiratory physiology: adaptations to high-level exercise. Br J Sports Med. 2012;46:381–4.CrossRefGoogle Scholar
  2. 2.
    Dempsey JA. J.B. Wolffe memorial lecture. Is the lung build for exercise? Med Sci Sports Exerc. 1986;18:143–55.CrossRefGoogle Scholar
  3. 3.
    Richards JC, McKenzie DC, Warburton DE, Road JD, Sheel AW. Prevalence of exercise-induced arterial hypoxemia. Med Sci Sports Exerc. 2004;36:1514–21.CrossRefGoogle Scholar
  4. 4.
    Dempsey JA, Wagner PD. Exercise-induced hypoxemia. J Appl Physiol. 1999;87:1997–2006.CrossRefGoogle Scholar
  5. 5.
    Koskolou MD, McKenzie DC. Arterial hypoxemia and performance during intense exercise. Eur J Appl Physiol Occup Physiol. 1994;68:80–6.CrossRefGoogle Scholar
  6. 6.
    Dempsey JA, McKenzie DC, Haverkamp HC, Eldridge MW. Update in the understanding of respiratory limitations to exercise performance in fit, active adults. Chest. 2008;134:613–22.CrossRefGoogle Scholar
  7. 7.
    Fitch KD, Sue-Chu M, Anderson SD, Boulet LP, Hancox RJ, McKenzie DC, Backer V, Rundell KW, Alonso JM, Kippelen P, Cummiskey JM, Garnier A, Ljungqvist A. Asthma and the elite athlete: summary of the International Olympic Committee’s consensus conference, Lausanne, Switzerland, January 22-24, 2008. J Allergy Clin Immunol. 2008;122(2):254–60, 260.e1-7CrossRefGoogle Scholar
  8. 8.
    Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention. 2018. https://ginasthma.org/. Accessed 10 Sept 2018.
  9. 9.
    Rundell KW, Im J, Mayers LB, Wilber RL, Szmedra L, Schmitz HR. Self-reported symptoms and exercise-induced asthma in the elite athlete. Med Sci Sports Exerc. 2001;33:208–13.CrossRefGoogle Scholar
  10. 10.
    Turcotte H, Langdeau JB, Thibault G, Boulet LP. Prevalence of respiratory symptoms in an athlete population. Respir Med. 2003;97(8):955–63.CrossRefGoogle Scholar
  11. 11.
    Anderson SD, Daviskas E. The mechanism of exercise-induced asthma is. J Allergy Clin Immunol. 2000;106(3):453–9.CrossRefGoogle Scholar
  12. 12.
    Rundell KW, Jenkinson DM. Exercise-induced bronchospasm in the elite athlete. Sports Med. 2002;32(9):583–600.CrossRefGoogle Scholar
  13. 13.
    Mannix ET, Manfredi F, Farber MO. A comparison of two challenge tests for identifying exercise-induced bronchospasm in figure skaters. Chest. 1999;115(3):649–53.CrossRefGoogle Scholar
  14. 14.
    Boulet LP, O'Byrne PM. Asthma and exercise-induced bronchoconstriction in athletes. N Engl J Med. 2015;372(7):641–8.CrossRefGoogle Scholar
  15. 15.
    Dickinson JW, Whyte GP, McConnell AK, Harries MG. Impact of changes in the IOPC-MC asthma criteria: a British perspective. Thorax. 2005;60:629–32.CrossRefGoogle Scholar
  16. 16.
    Anderson SD, Argyros GJ, Magnussen H, Holzer K. Provocation by eucapnic voluntary hyperpnea to identify exercise induced bronchoconstriction. Br J Sports Med. 2001;35:344–7.CrossRefGoogle Scholar
  17. 17.
    Sue-Chu M, Henriksen AH, Bjermer L. Non-invasive evaluation of lower airway inflammation in hyper-responsive elite cross-country skiers and asthmatics. Respir Med. 1999;93(10):719–25.CrossRefGoogle Scholar
  18. 18.
    Stickland MK, Rowe BH, Spooner CH, Vandermeer B, Dryden DM. Effect of warm-up exercise on exercise-induced bronchoconstriction. Med Sci Sports Exerc. 2012;44(3):383–91.CrossRefGoogle Scholar
  19. 19.
    McKenzie DC, McLuckie SL, Stirling DR. The protective effects of continuous and interval exercise in athletes with exercise-induced asthma. Med Sci Sports Exerc. 1994;26(8):951–6.CrossRefGoogle Scholar
  20. 20.
    Haney S, Hancox RJ. Recovery from bronchoconstriction and bronchodilator tolerance. Clin Rev Allergy Immunol. 2006;31(2–3):181–96.CrossRefGoogle Scholar
  21. 21.
    Parsons JP, Hallstrand TS, Mastronarde JG, Kaminsky DA, Rundell KW, Hull JH, et al. An official American Thoracic Society clinical practice guideline: exercise-induced bronchoconstriction. Am J Respir Crit Care Med. 2013;187(9):1016–27.CrossRefGoogle Scholar
  22. 22.
    Spooner CH, Spooner GR, Rowe BH. Mast-cell stabilising agents to prevent exercise-induced bronchoconstriction. Cochrane Database Syst Rev. 2003;(4):CD002307.Google Scholar
  23. 23.
    WADA Prohibited List 2018. https://www.wada-ama.org/sites/default/files/prohibited_list_2018_en.pdf. Accessed 10 Sept 2018.
  24. 24.
    Carter EA, Koehle MS. Immersion pulmonary edema in female triathletes. Pulm Med. 2011;2011:1–4.CrossRefGoogle Scholar
  25. 25.
    Koehle MS, Lepawsky M, McKenzie DC. Pulmonary oedema of immersion. Sports Med. 2005;35:183–90.CrossRefGoogle Scholar
  26. 26.
    Lund KL, Mahon RT, Tanen DA, Bakhda S. Swimming-induced pulmonary edema. Ann Emerg Med. 2003;41:251–6.CrossRefGoogle Scholar
  27. 27.
    Mahon RT, Kerr S, Amundson D, Scott Parrish J. Immersion pulmonary edema in special forces combat swimmers [5]. Chest. 2002;122:383–4.CrossRefGoogle Scholar
  28. 28.
    Carter EA, Mayo JR, MacInnis MJ, McKenzie DC, Koehle MS. Individual susceptibility to high altitude and immersion pulmonary edema and pulmonary lymphatics. Aviat Space Environ Med. 2014;85:9–14.CrossRefGoogle Scholar
  29. 29.
    Fraser JAV, Peacher DF, Freiberger JJ, Natoli MJ, Schinazi EA, Beck IV, Walker JR, Doar PO, Boso AE, Walker AJ, Kernagis DN, Moon RE. Risk factors for immersion pulmonary edema: hyperoxia does not attenuate pulmonary hypertension associated with cold water-immersed prone exercise at 4.7 ATA. J Appl Physiol. 2011;110:610–8.CrossRefGoogle Scholar
  30. 30.
    Andrianopoulos MV, Gallivan GJ, Gallivan KH. PVCM, PVCD, EPL, and irritable larynx syndrome: what are we talking about and how do we treat it? J Voice. 2000;14:607–18.CrossRefGoogle Scholar
  31. 31.
    Koehle MS, Lloyd-Smith R, McKenzie DC. Exertional dyspnea in athletes. B C Med J. 2003;45:508–14.Google Scholar
  32. 32.
    Ibrahim WH, Gheriani HA, Almohamed AA, Raza T. Paradoxical vocal cord motion disorder: past, present and future. Postgrad Med J. 2007;83:164–72.CrossRefGoogle Scholar
  33. 33.
    Dickinson J, Whyte G, McConnell A. Inspiratory muscle training: a simple cost-effective treatment for inspiratory stridor. Br J Sports Med. 2007;41:694–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • James O’Donovan
    • 1
  • Michael Koehle
    • 1
  • Don McKenzie
    • 1
    Email author
  1. 1.Division of Sport and Exercise MedicineThe University of British ColumbiaVancouverCanada

Personalised recommendations