Advertisement

Assessment of Some Diurnal Streamwater Profiles in Western and Northern Romania in Relation to Meteorological Data

  • Andrei-Emil BriciuEmail author
  • Dinu Iulian Oprea
  • Dumitru Mihăilă
  • Liliana Gina Lazurca (Andrei)
  • Luciana-Alexandra Costan (Briciu)
  • Petruț-Ionel Bistricean
Chapter
Part of the Springer Water book series (SPWA)

Abstract

Water and air measurements were conducted in river valleys of Romania to detect the shapes of diurnal profiles and their spatial variations. The studied river water parameters are pressure/level, temperature, and electrical conductivity. The air parameters, used for understanding the diurnal water profiles are pressure, temperature and relative humidity. Time intervals used in this study vary from few weeks to few months and sites are grouped depending on common time intervals for comparison purposes. The selected water monitoring sites have similar diurnal shapes of the studied parameters in areas with the natural flow (afternoon maximum water level and temperature and minimum electrical conductivity; the opposite events occur early in the morning) and disturbed evolutions in areas where dams and hydroelectric plants exist. The natural particular monitoring sites characteristics can also significantly impact the results of measurements. The mean diurnal water profiles, obtained from detrended time series, can be used for theoretical models.

Keywords

Natural flow Human impact Thermal water input Detrending 

Notes

Acknowledgements

Some measurements of this study were conducted within the research project entitled “Field studies in orthotidal potamology”. This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS – UEFISCDI, project number PN-II-RU-TE2014-4-2900.

References

  1. 1.
    Benyahya L, Caissie D, El-Jabi N, Satish MG (2010) Comparison of microclimate vs. remote meteorological data and results applied to a water temperature model (Miramichi River, Canada. J Hydrol 380:247–259CrossRefGoogle Scholar
  2. 2.
    Bond BJ, Jones JA, Moore G, Phillips N, Post D, McDonnell JJ (2002) The zone of vegetation influence on baseflow revealed by diel patterns of streamflow and vegetation water use in a headwater basin. Hydrol Process 16:1671–1677CrossRefGoogle Scholar
  3. 3.
    Briciu A-E (2014) Wavelet analysis of lunar semidiurnal tidal influence on selected inland rivers across the globe. Sci Rep 4:4193.  https://doi.org/10.1038/srep04193CrossRefGoogle Scholar
  4. 4.
    Briciu A-E (2017) Studiu de hidrologie urbană în arealul municipiului Suceava (Urban hydrology study in Suceava municipality area). Ștefan cel Mare University Publishing House, Suceava. ISBN 978-973-666-506-6Google Scholar
  5. 5.
    Briciu A-E (2018) Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers. Environ Monit Assess 190(3):160.  https://doi.org/10.1007/s10661-018-6513-xCrossRefGoogle Scholar
  6. 6.
    Briciu A-E, Mihăilă D, Oprea-Gancevici DI, Bistricean P-I (2016) Analysis of surface thermal waters in Baile Herculane area. In: SGEM2016 conference proceedings, vol 1, pp 63–70. ISSN 1314-2704Google Scholar
  7. 7.
    Briciu A-E, Mihăilă D, Oprea-Gancevici DI, Bistricean P-I (2017) Some aspects regarding the thermal water temperature of some sites in Băile Felix, Geoagiu-Băi and Hârșova areas, Romania. In: SGEM2017 conference proceedings, vol 17, no 31, pp 601–608. ISBN 978-619-7408-04-1/ISSN 1314-2704Google Scholar
  8. 8.
    Briciu A-E, Mihăilă D, Oprea DI, Bistricean P-I, Lazurca LG (2018) Orthotidal signal in the electrical conductivity of an inland river. Environ Monit Assess 190(5):282.  https://doi.org/10.1007/s10661-018-6676-5CrossRefGoogle Scholar
  9. 9.
    Briciu A-E, Oprea-Gancevici DI (2015) Diurnal thermal profiles of selected rivers in Romania. In: SGEM2015 conference proceedings, vol 1, pp 221–228. ISSN 1314-2704Google Scholar
  10. 10.
    Briciu A-E, Oprea-Gancevici DI, Mihăilă D, Bistricean, P-I (2016) Analysis of surface thermal waters in Moneasa area. In: SGEM2016 conference proceedings, vol 1, pp 71–78. ISSN 1314-2704Google Scholar
  11. 11.
    Burger H (1945) Einfluss des Waldes auf den Stand der Sewasser. Tech. rep., IV Mittlg. Der Wasserhaushalt im Valle di Melera von 1934/35 bis 1943/44 – Mitt.d. Schweiz. Anstalt f. forstl. Versuchsw., 25 Bd. 1Google Scholar
  12. 12.
    Caissie D (2006) The thermal regime of rivers: a review. Freshw Biol 51:1389–1406CrossRefGoogle Scholar
  13. 13.
    Callède J (1977) Oscillations journalières du débit des rivières en l’absence de precipitations. Cahier ORSTOM, série Hydrologie 14:219–283Google Scholar
  14. 14.
    Constantz J, Thomas CL, Zellweger G (1994) Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resour Res 30:3253–3264CrossRefGoogle Scholar
  15. 15.
    Gribovszki Z, Szilágyi J, Kalicz P (2010) Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation—a review. J Hydrol 385:371–383CrossRefGoogle Scholar
  16. 16.
    Jasonsmith JF, Macdonald BCT, White I (2017) Earth tide-induced fluctuations in the salinity of an inland river, New South Wales, Australia: a short-term study. Environ Monit Assess 189(4):188.  https://doi.org/10.1007/s10661-017-5880-zCrossRefGoogle Scholar
  17. 17.
    Kinouchi T, Yagi H, Miyamoto M (2007) Increase in stream temperature related to anthropogenic heat input from urban wastewater. J Hydrol 335:78–88CrossRefGoogle Scholar
  18. 18.
    Lundquist JD, Cayan DR (2002) Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States. J Hydrometeorol 3:591–1603CrossRefGoogle Scholar
  19. 19.
    Mihăilă D, Briciu A-E (2012) Actual climate evolution in the NE Romania. Manifestations and consequences. In: 12th international multidisciplinary scientific geoconference, SGEM2012 conference proceedings, vol 4, pp 241–252. ISSN 1314-2704Google Scholar
  20. 20.
    Morgenschweis G (1995) Kurzzeitige vorhersage der wasserentnahme aus einem flussgebiet. Vortragsmanusskript zur 8. Wiss. Tagung Hydrologie und wasserwirtschaft zum Thema Verfügbarkeit von Wasser vom 22/23. Marz 1995 in Bochum, 16 SeiteGoogle Scholar
  21. 21.
    Nimick DA, Gammons CH, Parker SR (2011) Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review. Chem Geol 283(1–2):3–17CrossRefGoogle Scholar
  22. 22.
    Nimick DA, Cleasby TE, McCleskey RB (2005) Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream. Environ Geol 47:603–614CrossRefGoogle Scholar
  23. 23.
    Poole GC, Berman CH (2001) An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ Manag 27:787–802CrossRefGoogle Scholar
  24. 24.
    Prats J, Val R, Armengol J, Dolz J (2010) Temporal variability in the thermal regime of the lower Ebro River (Spain) and alteration due to anthropogenic factors. J Hydrol 387:105–118CrossRefGoogle Scholar
  25. 25.
    Rycroft HB (1955) The effect of riparian vegetation on water-loss from an irrigation furrow at Jonkershoek. J South Afr For Assoc 26:2–9Google Scholar
  26. 26.
    Smith K (1981) The prediction of river water temperatures/Prédiction des températures des eaux de rivière. Hydrol Sci J 26(1):19–32.  https://doi.org/10.1080/02626668109490859CrossRefGoogle Scholar
  27. 27.
    Troxell HC (1936) The diurnal fluctuation in the ground-water and flow of the Santa Anna River and its meaning. Trans Am Geophys Union 17(4):496–504CrossRefGoogle Scholar
  28. 28.
    Tschinkel HM (1963) Short-term fluctuation in streamflow as related to evaporation. J Geophys Res 68(24):6459–6469.  https://doi.org/10.1029/JZ068i024p06459CrossRefGoogle Scholar
  29. 29.
    Verma RD (1986) Environmental impacts of irrigation projects. J Irrig Drain Eng 112:322–330CrossRefGoogle Scholar
  30. 30.
    Webb BW, Hannah DM, Moore RD, Brown LE, Nobilis F (2008) Recent advances in stream and river temperature research. Hydrol Process 22:902–918CrossRefGoogle Scholar
  31. 31.
    Wicht CL (1941) Diurnal fluctuation in Jonkershoeck streams due to evaporation and transpiration. J South Afr For Assoc 7:34–49Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrei-Emil Briciu
    • 1
    Email author
  • Dinu Iulian Oprea
    • 1
  • Dumitru Mihăilă
    • 1
  • Liliana Gina Lazurca (Andrei)
    • 1
  • Luciana-Alexandra Costan (Briciu)
    • 1
  • Petruț-Ionel Bistricean
    • 2
  1. 1.Department of GeographyȘtefan cel Mare University of Suceava (USV)SuceavaRomania
  2. 2.Suceava Weather Station, National Meteorological Administration (ANM)SuceavaRomania

Personalised recommendations