Advertisement

Host Plant Resistance to Pests and Pathogens, the Genetic Leverage in Integrated Pest and Disease Management

  • Véronique LefebvreEmail author
  • Nathalie Boissot
  • Jean-Luc Gallois
Chapter
  • 47 Downloads
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 9)

Abstract

The development of genetic resistance is a kingpin of Integrated Pest and Disease Management, by allowing plant resistance to a large range of pests and pathogens. Genetic resistance has mainly been reported in Crop Wild Relatives and selected during plant domestication and subsequent plant breeding. In this chapter, we describe how genetic resistance can be evaluated and genetically characterized. The main molecular mechanisms underlying host plant resistance are described, namely the dominant resistance mediated by R genes, and the recessive resistance based on loss-of-susceptibility, targeting S genes. Finally, we address a major issue of developing genetic resistance in crops, i.e., the durability of resistance, and how the resistance gene repertoire must be preserved to insure its sustainability in plant breeding. A framework showing how genetic resistance fits into the Integrated Pest Management is presented.

Keywords

Genetic resistance Crop wild relatives Plant breeding Quantitative resistance QTL NLR Susceptibility factors Resistance breaking Durability 

Notes

Acknowledgements

Research programs led by V.L., N.B., and J-L.G. were funded by the European Union’s Horizon H2020 research and innovation programme (G2P-SOL No 677379), French Research Agency (VIRAPHID ANR-2010-STRA-001-0, EFFECTOORES ANR-13-ADAP-0003, COBRA ANR-13-KBBE-0006, POTYMOVE ANR-16-CE20-000803, CASSANDRA ANR-18-LEAP-0004), and Agropolis Fondation (EFFECAPS Protéines phytopathogènes 1300-002).

References

  1. Abro MA, Lecompte F, Bardin M, Nicot PC (2014) Nitrogen fertilization impacts biocontrol of tomato gray mold. Agron Sustain Dev 34(3):641–648.  https://doi.org/10.1007/s13593-013-0168-3CrossRefGoogle Scholar
  2. Andolfo G, Jupe F, Witek K, Etherington GJ, Ercolano MR, Jones JD (2014) Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14:120.  https://doi.org/10.1186/1471-2229-14-120CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ayme V, Petit-Pierre J, Souche S, Palloix A, Moury B (2007) Molecular dissection of the potato virus Y VPg virulence factor reveals complex adaptations to the pvr2 resistance allelic series in pepper. J Gen Virol 88(Pt 5):1594–1601.  https://doi.org/10.1099/vir.0.82702-0CrossRefPubMedGoogle Scholar
  4. Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstadler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of mlo function. Mol Plant-Microbe Interact 21(1):30–39.  https://doi.org/10.1094/MPMI-21-1-0030CrossRefPubMedGoogle Scholar
  5. Barchi L, Bonnet J, Boudet C, Signoret P, Nagy I, Lanteri S, Palloix A, Lefebvre V (2007) A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) and selection of reduced recombinant inbred line subsets for fast mapping. Genome 50(1):51–60.  https://doi.org/10.1139/g06-140CrossRefPubMedGoogle Scholar
  6. Bartoli C, Roux F (2017) Genome-wide association studies in plant pathosystems: toward an tcological genomics approach. Front Plant Sci 8:763.  https://doi.org/10.3389/fpls.2017.00763CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bastet A, Robaglia C, Gallois JL (2017) eIF4E resistance: natural variation should guide gene editing. Trends Plant Sci 22(5):411–419.  https://doi.org/10.1016/j.tplants.2017.01.008CrossRefPubMedGoogle Scholar
  8. Bastet A, Lederer B, Giovinazzo N, Arnoux X, German-Retana S, Reinbold C, Brault V, Garcia D, Djennane S, Gersch S, Lemaire O, Robaglia C, Gallois JL (2018) Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12896CrossRefGoogle Scholar
  9. Boissot N, Pavis C, Guillaume R, Lafortune D, Sauvion N (2000) Insect resistance in Cucumis melo accession 90625. In: Katzir N, Paris H (eds) 7th EUCARPIA meeting on cucurbit genetics and breeding, Ma’ale Ha Hamisha, Israel, 2000. International Society for Horticultural Science, Leuven, pp 297–304Google Scholar
  10. Boissot N, Thomas S, Sauvion N, Marchal C, Pavis C, Dogimont C (2010) Mapping and validation of QTLs for resistance to aphids and whiteflies in melon. Theor Appl Genet 121(1):9–20.  https://doi.org/10.1007/s00122-010-1287-8CrossRefPubMedGoogle Scholar
  11. Boissot N, Schoeny A, Vanlerberghe-Masutti F (2016a) Vat, an amazing gene conferring resistance to aphids and viruses they carry: from molecular structure to field effects. Front Plant Sci 7:1420.  https://doi.org/10.3389/fpls.2016.01420CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boissot N, Thomas S, Chovelon V, Lecoq H (2016b) NBS-LRR-mediated resistance triggered by aphids: viruses do not adapt; aphids adapt via different mechanisms. BMC Plant Biol 16:25.  https://doi.org/10.1186/s12870-016-0708-5CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bossa-Castro AM, Tekete C, Raghavan C, Delorean EE, Dereeper A, Dagno K, Koita O, Mosquera G, Leung H, Verdier V, Leach JE (2018) Allelic variation for broad-spectrum resistance and susceptibility to bacterial pathogens identified in a rice MAGIC population. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12895CrossRefGoogle Scholar
  14. Boyd LA, Ridout C, O’Sullivan DM, Leach JE, Leung H (2013) Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet 29(4):233–240.  https://doi.org/10.1016/j.tig.2012.10.011CrossRefPubMedGoogle Scholar
  15. Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12(10):232.  https://doi.org/10.1186/gb-2011-12-10-232CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brotman Y, Normantovich M, Goldenberg Z, Zvirin Z, Kovalski I, Stovbun N, Doniger T, Bolger AM, Troadec C, Bendahmane A, Cohen R, Katzir N, Pitrat M, Dogimont C, Perl-Treves R (2013) Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Mol Plant 6(1):235–238.  https://doi.org/10.1093/mp/sss121CrossRefPubMedGoogle Scholar
  17. Caranta C, Lefebvre V, Palloix A (1997) Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative quantitative trait loci. Mol Plant-Microbe Interact 10(7):872–878.  https://doi.org/10.1111/j.1365-3059.2007.01620.xCrossRefGoogle Scholar
  18. Caromel B, Mugniery D, Kerlan MC, Andrzejewski S, Palloix A, Ellisseche D, Rousselle-Bourgeois F, Lefebvre V (2005) Resistance quantitative trait loci originating from Solanum sparsipilum act independently on the sex ratio of Globodera pallida and together for developing a necrotic reaction. Mol Plant-Microbe Interact 18(11):1186–1194.  https://doi.org/10.1094/MPMI-18-1186CrossRefPubMedGoogle Scholar
  19. Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN (2014) A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front Plant Sci 5:606.  https://doi.org/10.3389/fpls.2014.00606CrossRefPubMedPubMedCentralGoogle Scholar
  20. Charron C, Nicolai M, Gallois JL, Robaglia C, Moury B, Palloix A, Caranta C (2008) Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J 54(1):56–68.  https://doi.org/10.1111/j.1365-313X.2008.03407.xCrossRefPubMedGoogle Scholar
  21. Christopoulou M, Wo SR, Kozik A, McHale LK, Truco MJ, Wroblewski T, Michelmore RW (2015) Genome-wide architecture of disease resistance genes in lettuce. G3 5(12):2655–2669.  https://doi.org/10.1534/g3.115.020818CrossRefPubMedGoogle Scholar
  22. Danan S, Veyrieras JB, Lefebvre V (2011) Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol 11:16.  https://doi.org/10.1186/1471-2229-11-16CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833.  https://doi.org/10.1038/35081161CrossRefPubMedGoogle Scholar
  24. de Almeida EJ, Favery B, Engler G, Abad P (2005) Loss of susceptibility as an alternative for nematode resistance. Curr Opin Biotechnol 16(2):112–117.  https://doi.org/10.1016/j.copbio.2005.01.009CrossRefGoogle Scholar
  25. Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57(3):1070–1082.  https://doi.org/10.2135/cropsci2016.10.0885CrossRefGoogle Scholar
  26. Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601.  https://doi.org/10.1016/j.tplants.2014.05.006CrossRefPubMedGoogle Scholar
  27. Djian-Caporalino C, Palloix A, Fazari A, Marteu N, Barbary A, Abad P, Sage-Palloix AM, Mateille T, Risso S, Lanza R, Taussig C, Castagnone-Sereno P (2014) Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC Plant Biol 14:53.  https://doi.org/10.1186/1471-2229-14-53CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dogimont C, Chovelon V, Tual S, Boissot N, Rittener V, Giovinazzo N (2007) Bendahmane A Molecular determinants of recognition specificity at the aphid and powdery mildew Vat/Pm-W resistance locus in melon. In: XIII International congress MPMI, Sorrento, ItalyGoogle Scholar
  29. Dogimont C, Bendahmane A, Chovelon V, Boissot N (2010) Host plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations. C R Biol 333(6–7):566–573.  https://doi.org/10.1016/j.crvi.2010.04.003CrossRefPubMedGoogle Scholar
  30. Fabre F, Rousseau E, Mailleret L, Moury B (2015) Epidemiological and evolutionary management of plant resistance: optimizing the deployment of cultivar mixtures in time and space in agricultural landscapes. Evol Appl 8(10):919–932.  https://doi.org/10.1111/eva.12304CrossRefPubMedPubMedCentralGoogle Scholar
  31. Flor H (1955) Host-parasite interaction in flax rust - its genetics and other implications. Phytopathology 45:680–685Google Scholar
  32. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296CrossRefGoogle Scholar
  33. Gallois J-L, Moury B, German-Retana S (2018) Role of the genetic background in resistance to plant viruses. Int J Mol Sci 19:2856.  https://doi.org/10.3390/ijms19102856CrossRefPubMedCentralGoogle Scholar
  34. Garcia-Arenal F, McDonald BA (2003) An analysis of the durability of resistance to plant viruses. Phytopathology 93(8):941–952.  https://doi.org/10.1094/PHYTO.2003.93.8.941CrossRefPubMedGoogle Scholar
  35. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutierrez S, Blanca J, Canizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodriguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Mele M, Yang LM, Weng YQ, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Pico B, Gabaldon T, Roma G, Guigo R, Casacuberta JM, Arus P, Puigdomenech P (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 109(29):11872–11877.  https://doi.org/10.1073/pnas.1205415109CrossRefPubMedPubMedCentralGoogle Scholar
  36. Goverse A, Smant G, Bouwman L, Bakker E, Bakker J (2009) The BIOEXPLOIT project. Potato Res 52(3):209–213.  https://doi.org/10.1007/s11540-009-9133-6CrossRefGoogle Scholar
  37. Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within the solanaceae. Genetics 155(2):873–887PubMedPubMedCentralGoogle Scholar
  38. Guillaume R, Boissot N (2001) Resistance to Diaphania hyalinata (Lepidoptera: Crambidae) in Cucumis species. J Econ Entomol 94(3):719–723CrossRefGoogle Scholar
  39. Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14(2):177–193.  https://doi.org/10.1016/S0958-1669(03)00035-1CrossRefPubMedGoogle Scholar
  40. Harrison BD (2002) Virus variation in relation to resistance breaking in plants. Euphytica 124:181–192CrossRefGoogle Scholar
  41. Hückelhoven R, Eichmann R, Weis C, Hoefle C, Proels RK (2013) Genetic loss of susceptibility: a costly route to disease resistance? Plant Pathol 62(S1):56–62.  https://doi.org/10.1111/ppa.12103CrossRefGoogle Scholar
  42. Janzac B, Fabre F, Palloix A, Moury B (2009) Constraints on evolution of virus avirulence factors predict the durability of corresponding plant resistances. Mol Plant Pathol 10(5):599–610.  https://doi.org/10.1111/j.1364-3703.2009.00554.xCrossRefPubMedPubMedCentralGoogle Scholar
  43. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329.  https://doi.org/10.1038/nature05286CrossRefGoogle Scholar
  44. Kaloshian I, Walling LL (2005) Hemipterans as plant pathogens. Annu Rev Phytopathol 43:491–521.  https://doi.org/10.1146/annurev.phyto.43.040204.135944CrossRefPubMedGoogle Scholar
  45. Karasov TL, Horton MW, Bergelson J (2014) Genomic variability as a driver of plant-pathogen coevolution? Curr Opin Plant Biol 18:24–30.  https://doi.org/10.1016/j.pbi.2013.12.003CrossRefPubMedPubMedCentralGoogle Scholar
  46. Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463.  https://doi.org/10.1146/annurev.ge.24.120190.002311CrossRefPubMedGoogle Scholar
  47. Kloth KJ, ten Broeke CJM, Thoen MPM, den Brink MHV, Wiegers GL, Krips OE, Noldus L, Dicke M, Jongsma MA (2015) High-throughput phenotyping of plant resistance to aphids by automated video tracking. Plant Methods 11:4.  https://doi.org/10.1186/s13007-015-0044-zCrossRefPubMedPubMedCentralGoogle Scholar
  48. Lanfermeijer FC, Warmink J, Hille J (2005) The products of the broken Tm-2 and the durable Tm-2(2) resistance genes from tomato differ in four amino acids. J Exp Bot 56(421):2925–2933.  https://doi.org/10.1093/jxb/eri288CrossRefPubMedGoogle Scholar
  49. Leach JE, Vera Cruz CM, Bai J, Leung H (2001) Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu Rev Phytopathol 39:187–224.  https://doi.org/10.1146/annurev.phyto.39.1.187CrossRefPubMedGoogle Scholar
  50. Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper – Phytophthora capsici Leonian. Theor Appl Genet 93(4):503–511.  https://doi.org/10.1007/Bf00417941CrossRefPubMedGoogle Scholar
  51. Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Stadler T, Ye Z, Du Y, Huang S (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46(11):1220–1226.  https://doi.org/10.1038/ng.3117CrossRefPubMedGoogle Scholar
  52. Lozano-Torres JL, Wilbers RH, Gawronski P, Boshoven JC, Finkers-Tomczak A, Cordewener JH, America AH, Overmars HA, Van't Klooster JW, Baranowski L, Sobczak M, Ilyas M, van der Hoorn RA, Schots A, de Wit PJ, Bakker J, Goverse A, Smant G (2012) Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proc Natl Acad Sci U S A 109(25):10119–10124.  https://doi.org/10.1073/pnas.1202867109CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mallard S, Cantet M, Massire A, Bachellez A, Ewert S, Lefebvre V (2013) A key QTL cluster is conserved among accessions and exhibits broad-spectrum resistance to Phytophthora capsici: a valuable locus for pepper breeding. Mol Breed 32(2):349–364.  https://doi.org/10.1007/s11032-013-9875-3CrossRefGoogle Scholar
  54. McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379.  https://doi.org/10.1146/annurev.phyto.40.120501.101443CrossRefPubMedGoogle Scholar
  55. Meziadi C, Richard MMS, Derquennes A, Thareau V, Blanchet S, Gratias A, Pflieger S, Geffroy V (2016) Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci 242:351–357.  https://doi.org/10.1016/j.plantsci.2015.09.006CrossRefPubMedGoogle Scholar
  56. Montarry J, Cartier E, Jacquemond M, Palloix A, Moury B (2012) Virus adaptation to quantitative plant resistance: erosion or breakdown? J Evol Biol 25:11.  https://doi.org/10.1111/j.1420-9101.2012.02600.xCrossRefGoogle Scholar
  57. Moury B, Verdin E (2012) Viruses of pepper crops in the Mediterranean basin: a remarkable stasis. In: Loebenstein G, Lecoq H (eds) Viruses and virus diseases of vegetables in the Mediterranean Basin, vol 84. Advances in Virus Research, pp 127–162.  https://doi.org/10.1016/b978-0-12-394314-9.00004-xGoogle Scholar
  58. Moury B, Janzac B, Ruellan Y, Simon V, Ben Khalifa M, Fakhfakh H, Fabre F, Palloix A (2014) Interaction patterns between Potato Virus Y and eIF4E-mediated recessive resistance in the Solanaceae. J Virol 88(17):9799–9807.  https://doi.org/10.1128/jvi.00930-14CrossRefPubMedPubMedCentralGoogle Scholar
  59. Navarrete M, Djian-Caporalino C, Mateille T, Palloix A, Sage-Palloix AM, Lefevre A, Fazari A, Marteu N, Tavoillot J, Dufils A, Furnion C, Pares L, Forest I (2016) A resistant pepper used as a trap cover crop in vegetable production strongly decreases root-knot nematode infestation in soil. Agron Sustain Dev 36(4).  https://doi.org/10.1007/s13593-016-0401-y
  60. Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19(1):21–33.  https://doi.org/10.1038/nrg.2017.82CrossRefPubMedGoogle Scholar
  61. Nicaise V (2014) Crop immunity against viruses: outcomes and future challenges. Front Plant Sci 5:660.  https://doi.org/10.3389/fpls.2014.00660CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ntoukakis V, Saur IM, Conlan B, Rathjen JP (2014) The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Curr Opin Plant Biol 20:69–74.  https://doi.org/10.1016/j.pbi.2014.04.002CrossRefPubMedGoogle Scholar
  63. Oerke EC (2006) Centenary review: crop losses to pests. J Agric Sci 144:31–43.  https://doi.org/10.1017/S0021859605005708CrossRefGoogle Scholar
  64. Pagan I, Garcia-Arenal F (2018) Tolerance to plant pathogens: theory and experimental evidence. Int J Mol Sci 19 (3).  https://doi.org/10.3390/ijms19030810
  65. Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537.  https://doi.org/10.3389/fpls.2017.00537CrossRefPubMedPubMedCentralGoogle Scholar
  66. Parra L, Maisonneuve B, Lebeda A, Schut J, Christopoulou M, Jeuken M, McHale L, Truco MJ, Crute I, Michelmore R (2016) Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 210(3):309–326.  https://doi.org/10.1007/s10681-016-1687-1CrossRefGoogle Scholar
  67. Pavan S, Jacobsen E, Visser RG, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25(1):1–12.  https://doi.org/10.1007/s11032-009-9323-6CrossRefPubMedPubMedCentralGoogle Scholar
  68. Peters SA, Datema E, Szinay D, van Staveren MJ, Schijlen EG, van Haarst JC, Hesselink T, Abma-Henkens MH, Bai Y, de Jong H, Stiekema WJ, Klein Lankhorst RM, van Ham RC (2009) Solanum lycopersicum cv. Heinz 1706 chromosome 6: distribution and abundance of genes and retrotransposable elements. Plant J 58(5):857–869.  https://doi.org/10.1111/j.1365-313X.2009.03822.xCrossRefPubMedGoogle Scholar
  69. Pflieger S, Lefebvre V, Caranta C, Blattes A, Goffinet B, Palloix A (1999) Disease resistance gene analogs as candidates for QTLs involved in pepper-pathogen interactions. Genome 42(6):1100–1110.  https://doi.org/10.1139/gen-42-6-1100CrossRefPubMedGoogle Scholar
  70. Pflieger S, Lefebvre V, Causse M (2001a) The candidate gene approach in plant genetics: a review. Mol Breed 7(4):275–291.  https://doi.org/10.1023/A:1011605013259CrossRefGoogle Scholar
  71. Pflieger S, Palloix A, Caranta C, Blattes A, Lefebvre V (2001b) Defense response genes co-localize with quantitative disease resistance loci in pepper. Theor Appl Genet 103(6–7):920–929.  https://doi.org/10.1007/s001220100726CrossRefGoogle Scholar
  72. Poland J, Rutkoski J (2016) Advances and challenges in genomic selection for disease resistance. Annu Rev Phytopathol 54:79–98.  https://doi.org/10.1146/annurev-phyto-080615-100056CrossRefPubMedGoogle Scholar
  73. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 108(17):6893–6898.  https://doi.org/10.1073/pnas.1010894108CrossRefPubMedPubMedCentralGoogle Scholar
  74. Quenouille J, Paulhiac E, Moury B, Palloix A (2014) Quantitative trait loci from the host genetic background modulates the durability of a resistance gene: a rational basis for sustainable resistance breeding in plants. Heredity 112(6):579–587CrossRefGoogle Scholar
  75. Quenouille J, Saint-Felix L, Moury B, Palloix A (2015) Diversity of genetic backgrounds modulating the durability of a major resistance gene. Analysis of a core collection of pepper landraces resistant to Potato virus Y. Mol Plant Pathol.  https://doi.org/10.1111/mpp.12277CrossRefGoogle Scholar
  76. Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11(1):40–45.  https://doi.org/10.1016/j.tplants.2005.11.004CrossRefPubMedGoogle Scholar
  77. Sage-Palloix AM, Jourdan F, Phaly T, Nemouchi G, Lefebvre V, Palloix A (2007) Analysis of diversity in pepper genetic resources: distribution of horticultural and resistance traits in the INRA pepper germplasm. In: Niemirowicz-Szczytt K (ed) 13th EUCARPIA Meeting on genetics and breeding of Capsicum and eggplant. Warsaw University of Life science Press, WarsawGoogle Scholar
  78. Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86(1):123–133.  https://doi.org/10.1016/S0092-8674(00)80083-5CrossRefPubMedGoogle Scholar
  79. Sauvion N, Mauriello V, Renard B, Boissot N (2005) Impact of melon accessions resistant to aphids on the demographic potential of silverleaf whitefly. J Econ Entomol 98(2):557–567CrossRefGoogle Scholar
  80. Schoeny A, Desbiez C, Millot P, Wipf-Scheibel C, Nozeran K, Gognalons P, Lecoq H, Boissot N (2017) Impact of Vat resistance in melon on viral epidemics and genetic structure of virus populations. Virus Res 241:105–115.  https://doi.org/10.1016/j.virusres.2017.05.024CrossRefPubMedGoogle Scholar
  81. Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12(2):89–100.  https://doi.org/10.1038/nri3141CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tamisier L, Rousseau E, Barraille S, Nemouchi G, Szadkowski M, Mailleret L, Grognard F, Fabre F, Moury B, Palloix A (2017) Quantitative trait loci in pepper control the effective population size of two RNA viruses at inoculation. J Gen Virol 98(7):1923–1931.  https://doi.org/10.1099/jgv.0.000835CrossRefPubMedGoogle Scholar
  83. Thabuis A, Palloix A, Pflieger S, Daubeze AM, Caranta C, Lefebvre V (2003) Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106(8):1473–1485.  https://doi.org/10.1007/s00122-003-1206-3CrossRefPubMedGoogle Scholar
  84. Thabuis A, Lefebvre V, Bernard G, Daubeze AM, Phaly T, Pochard E, Palloix A (2004a) Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to Phytophthora capsici in pepper. Theor Appl Genet 109(2):342–351.  https://doi.org/10.1007/s00122-004-1633-9CrossRefPubMedGoogle Scholar
  85. Thabuis A, Palloix A, Servin B, Daubeze AM, Signoret P, Hospital F, Lefebvre V (2004b) Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Mol Breed 14(1):9–20.  https://doi.org/10.1023/B:Molb.0000037991.38278.82CrossRefGoogle Scholar
  86. Thomas S, Dogimont C, Boissot N (2012) Association between Aphis gossypii genotype and phenotype on melon accessions. Arthropod Plant Interact 6(1):93–101.  https://doi.org/10.1007/s11829-011-9155-2CrossRefGoogle Scholar
  87. Thomas S, Vanlerberghe-Masutti F, Mistral P, Loiseau A, Boissot N (2016) Insight into the durability of plant resistance to aphids from a demo-genetic study of Aphis gossypii in melon crops. Evol Appl 9(6):756–768.  https://doi.org/10.1111/eva.12382CrossRefPubMedPubMedCentralGoogle Scholar
  88. van der Hoorn RA, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20(8):2009–2017.  https://doi.org/10.1105/tpc.108.060194CrossRefPubMedPubMedCentralGoogle Scholar
  89. van der Voort JR, Kanyuka K, van der Vossen E, Bendahmane A, Mooijman P, Klein-Lankhorst R, Stiekema W, Baulcombe D, Bakker J (1999) Tight physical linkage of the nematode resistance gene Gpa2 and the virus resistance gene Rx on a single segment introgressed from the wild species Solanum tuberosum subsp andigena CPC1673 into cultivated potato. Mol Plant-Microbe Interact 12(3):197–206.  https://doi.org/10.1094/Mpmi.1999.12.3.197CrossRefGoogle Scholar
  90. van Schie CC, Takken FL (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581.  https://doi.org/10.1146/annurev-phyto-102313-045854CrossRefPubMedGoogle Scholar
  91. Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RG, Scott JW, Edwards JD, Bai Y (2013) The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet 9(3):e1003399.  https://doi.org/10.1371/journal.pgen.1003399CrossRefPubMedPubMedCentralGoogle Scholar
  92. Vleeshouwers VG, Oliver RP (2014) Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant-Microbe Interact 27(3):196–206.  https://doi.org/10.1094/MPMI-10-13-0313-IACrossRefPubMedGoogle Scholar
  93. Walters SA, Wehner TC, Barker R (1997) A single recessive gene for resistance to the root-knot nematode (Meloidogyne javanica) in Cucumls sativus var. hardwickii. J Hered 88(1):66–69CrossRefGoogle Scholar
  94. Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJB (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relataives. Am J Bot 101(10):1791–1800.  https://doi.org/10.3732/ajb.1400116CrossRefPubMedGoogle Scholar
  95. Wiesner-Hanks T, Nelson R (2016) Multiple disease resistance in plants. Annu Rev Phytopathol 54:229–252.  https://doi.org/10.1146/annurev-phyto-080615-100037CrossRefGoogle Scholar
  96. Xiao F, Lu M, Li J, Zhao T, Yi SY, Thara VK, Tang X, Zhou JM (2003) Pto mutants differentially activate Prf-dependent, avrPto-independent resistance and gene-for-gene resistance. Plant Physiol 131(3):1239–1249.  https://doi.org/10.1104/pp.016113CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant Genome 1(1):5–20.  https://doi.org/10.3835/plantgenome2008.02.0089CrossRefGoogle Scholar
  98. Zhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C, Lin T, Qin M, Peng M, Yang C, Cao X, Han X, Wang X, van der Knaap E, Zhang Z, Cui X, Klee H, Fernie AR, Luo J, Huang S (2018) Rewiring of the fruit metabolome in tomato breeding. Cell 172(1–2):249–261.  https://doi.org/10.1016/j.cell.2017.12.019CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Véronique Lefebvre
    • 1
    Email author
  • Nathalie Boissot
    • 1
  • Jean-Luc Gallois
    • 1
  1. 1.GAFL, INRAEMontfavetFrance

Personalised recommendations