Advertisement

Diagnostics and Identification of Diseases, Insects and Mites

  • Davide SpadaroEmail author
  • Nuria Agustí
  • Sara Franco Ortega
  • Monica A. Hurtado Ruiz
Chapter
  • 30 Downloads
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 9)

Abstract

Rapid and reliable diagnostic methods for arthropod pests and pathogens allow for a rational and efficient use of plant protection products. Traditional detection methods based on visual assessment of plant symptoms, isolation, culturing in selective media, and direct microscopic observation of pathogens are frequently laborious, time-consuming and require extensive knowledge of classical taxonomy. Molecular techniques are faster, more specific, sensitive, and accurate than traditional techniques. Plant viral and bacterial diagnostics have been traditionally based on serological methods, such as ELISA or Lateral Flow Devices. New molecular techniques (qPCR, digital PCR, microarray) have been developed, optimized and validated in the last years with different applications to pest and pathogen detection and identification. HTS technologies are having an enormous impact on biological sciences, allowing the determination of genome variation within a species or a population. The use of field techniques, such as LAMP and portable platforms, is a promising tool to early and quickly detect pests. One of the critical points of on-site detection consists in the use of simple and user-friendly nucleic acid extraction procedure, involving a low number of steps. The choice of the diagnostic technique depends on the balance between the reliability and the cost of the analysis.

Keywords

Digital PCR ELISA High throughput sequencing In field diagnostics LAMP Lateral flow devices Microarray Molecular markers Phylogeny Real time PCR 

Notes

Acknowledgments

Work carried out with a funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 634179 “Effective Management of Pests and Harmful Alien Species – Integrated Solutions” (EMPHASIS) and under grant agreement No 773139 “Validation of diagnostic tests to support plant health (VALITEST)”. The authors have no conflicts of interest to declare.

References

  1. Abd-Elsalam K, Bahkali A, Moslem M, Amin OE, Niessen L (2011) An optimized protocol for DNA extraction from wheat seeds and Loop-Mediated Isothermal Amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain. Int J Mol Sci 12(6):3459–3472.  https://doi.org/10.3390/ijms12063459CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M, Samuitiene M, Boonham N (2009) Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol 10(4):537–545.  https://doi.org/10.1111/j.1364-3703.2009.00545.xCrossRefPubMedPubMedCentralGoogle Scholar
  3. Adams IP, Glover R, Souza-Richards R, Bennett S, Hany U, Boonham N (2013a) Complete genome sequence of arracacha virus B: a novel cheravirus. Arch Virol 158(4):909–913.  https://doi.org/10.1007/s00705-012-1546-xCrossRefPubMedGoogle Scholar
  4. Adams IP, Miano DW, Kinyua ZM, Wangai A, Kimani E, Phiri N, Reeder R, Harju V, Glover R, Hany U, Souza-Richard R, Deb Nath P, Nixon T, Fox A, Barnes A, Smith J, Skelton A, Thwaites R, Mumford R, Boonham N (2013b) Use of next-generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathol 62(4):741–749.  https://doi.org/10.1111/j.1365-3059.2012.02690.xCrossRefGoogle Scholar
  5. Aguilar-Fenollosa E, Pina T, Gómez-Martínez MA, Hurtado MA, Jacas JA (2012) Does host adaptation of Tetranychus urticae populations in clementine orchards with a Festuca arundinacea cover contribute to a better natural regulation of this pest mite? Entomol Exp Appl 144(2):181–190.  https://doi.org/10.1111/j.1570-7458.2012.01276.xCrossRefGoogle Scholar
  6. Aguilar-Fenollosa E, Rey-Caballero J, Blasco JM, Segarra-Moragues JG, Hurtado Ruiz MA, Jaques Miret JA (2016) Patterns of ambulatory dispersal in Tetranychus urticae can be associated with jost plant specialization. Exp Appl Acarol 68(1):1–20.  https://doi.org/10.1007/s10493-015-9969-1CrossRefPubMedGoogle Scholar
  7. Agustí N, Aramburu J, Gabarra R (1999a) Immunological detection of Helicoverpa armigera (Lepidoptera: Noctuidae) ingested by heteropteran predators: time related decay and effect of meal size on detection period. Ann Entomol Soc Am 92(1):56–62.  https://doi.org/10.1093/aesa/92.1.56CrossRefGoogle Scholar
  8. Agustí N, de Vicente MC, Gabarra R (1999b) Development of sequence amplified characterized region (SCAR) markers of Helicoverpa armigera: a new polymerase chain reaction-based technique for predator gut analysis. Mol Ecol 8(9):1467–1474.  https://doi.org/10.1046/j.1365-294x.1999.00717.xCrossRefPubMedGoogle Scholar
  9. Agustí N, de Vicente C, Gabarra R (2000) Developing SCAR markers to study predation on Trialeurodes vaporariorum. Insect Mol Biol 9(3):263–268.  https://doi.org/10.1046/j.1365-2583.2000.00185.xCrossRefPubMedGoogle Scholar
  10. Agustí N, Unruh TR, Welter SC (2003a) Detecting Cacopsylla pyricola (Hemiptera: Psyllidae) in predator guts by using COI mitochondrial markers. B Entomol Res 93(3):179–185.  https://doi.org/10.1079/BER2003236CrossRefGoogle Scholar
  11. Agustí N, Shayler SP, Harwood JD, Vaughan IP, Sunderland KD, Symondson WOC (2003b) Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Mol Ecol 12(12):3467–3475.  https://doi.org/10.1046/j.1365-294X.2003.02014.xCrossRefPubMedGoogle Scholar
  12. Al Rwahnih M, Daubert S, Golino D, Islas C, Rowhani A (2015) Comparison of next-generation sequencing versus biological indexing for the optimal detection of viral pathogens in grapevine. Phytopathology 105(6):758–763.  https://doi.org/10.1094/PHYTO-06-14-0165-RCrossRefPubMedGoogle Scholar
  13. Amaral Carneiro G, Matic S, Ortu G, Garibaldi A, Spadaro D, Gullino ML (2017) Development and validation of a TaqMan real time PCR assay for the specific detection and quantification of Fusarium fujikuroi in rice plants and seeds. Phytopathology 107(7):885–892.  https://doi.org/10.1094/PHYTO-10-16-0371-RCrossRefGoogle Scholar
  14. Antolin MF, Guertin DS, Petersen JJ (1996) The origin of gregarious Muscidifurax (Hymenoptera: Pteromalidae) in North America: an analysis using molecular markers. Biol Control 6(1):76–82.  https://doi.org/10.1006/bcon.1996.0010CrossRefGoogle Scholar
  15. Asselin JAE, Bonasera JM, Beer SV (2016) PCR primers for detection of Pantoea ananatis, Burkholderia spp., and Enterobacter sp. from onion. Plant Dis 100(4):836–846.  https://doi.org/10.1094/PDIS-08-15-0941-RECrossRefPubMedGoogle Scholar
  16. Ayukawa Y, Komatsu K, Kashiwa T, Akai K, Yamada M, Teraoka T, Arie T (2016) Detection and differentiation of Fusarium oxysporum f. sp. lycopersici race 1 using loop-mediated isothermal amplification with three primer sets. Lett Appl Microbiol 63(3):202–209.  https://doi.org/10.1111/lam.12597CrossRefPubMedGoogle Scholar
  17. Bailly X, Migeon A, Navajas M (2004) Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about ecological factors. Biol J Linn Soc 82(1):69–78.  https://doi.org/10.1111/j.1095-8312.2004.00316.xCrossRefGoogle Scholar
  18. Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biot 87(1):99–108.  https://doi.org/10.1007/s00253-010-2585-4CrossRefGoogle Scholar
  19. Behura SK (2006) Molecular marker systems in insects: current trends and future avenues. Mol Ecol 15(11):3087–3113.  https://doi.org/10.1111/j.1365-294X.2006.03014.xCrossRefPubMedGoogle Scholar
  20. Belosludtsev YY, Bowerman D, Weil R, Marthandan N, Balog R, Luebke K, Lawson J, Johnston SA, Lyons CR, Obrien K, Garner HR, Powdrill TF (2004) Organism identification using a genome sequence-independent microarray probe set. BioTechniques 37(4):654–660CrossRefGoogle Scholar
  21. Ben-David T, Melamed S, Gerson U, Morin S (2007) ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Exp Appl Acarol 41(3):169–181.  https://doi.org/10.1007/s10493-007-9058-1CrossRefPubMedGoogle Scholar
  22. Bertoldo C, Gilardi G, Spadaro D, Gullino ML, Garibaldi A (2015) Genetic diversity and virulence of Italian strains of Fusarium oxysporum isolated from Eustoma grandiflorum. Eur J Plant Pathol 141(1):83–97.  https://doi.org/10.1007/s10658-014-0526-2CrossRefGoogle Scholar
  23. Bimboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7(6):1513–1523.  https://doi.org/10.1093/nar/7.6.1513CrossRefGoogle Scholar
  24. Boonham N, González Pérez L, Mendez MS, Lilia Peralta E, Blockley A, Walsh K, Barker I, Mumford RA (2004) Development of a real-time RT-PCR assay for the detection of Potato spindle tuber viroid. J Virol Methods 116(2):139–146.  https://doi.org/10.1016/j.jviromet.2003.11.005CrossRefPubMedGoogle Scholar
  25. Boonham N, Tomlinson J, Mumford R (2007) Microarrays for rapid identification of plant viruses. Annu Rev Phytopathol 45:307–328.  https://doi.org/10.1146/annurev.phyto.45.062806.094349CrossRefPubMedGoogle Scholar
  26. Boonham N, Kreuze J, Winter S, van der Vlug R, Bergervoet J, Tomlinson J, Mumford R (2014) Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res 186:20–31.  https://doi.org/10.1016/j.virusres.2013.12.007CrossRefPubMedGoogle Scholar
  27. Boubou A, Migeon A, Roderick GK, Auger P, Cornuet JM, Magalhães S, Navajas M (2012) Test of colonisation scenarios reveals complex invasion history of the red tomato spider mite Tetranychus evansi. PLoS One 7(4):e35601.  https://doi.org/10.1371/journal.pone.0035601CrossRefPubMedPubMedCentralGoogle Scholar
  28. Boyer S, Snyder WE, Wratten SD (2016) Molecular and isotopic approaches to food webs in agroecosystems. Food Webs 9:1–3.  https://doi.org/10.1016/j.fooweb.2016.07.004CrossRefGoogle Scholar
  29. Breene RG, Sweet MH, Olson JK (1990) Analysis of the gut contents of Naiads of Enallagma civile (Odonata, Coenagrionidae) from a Texas pond. J Am Mosq Control 6(3):547–548Google Scholar
  30. Carbonnelle S, Hance T, Migeon A, Baret P, Cros-Arteil S, Navajas M (2007) Microsatellite markers reveal spatial genetic structure of Tetranychus urticae (Acari: Tetranychidae) populations along a latitudinal gradient in Europe. Exp Appl Acarol 41(4):225–241.  https://doi.org/10.1007/s10493-007-9068-zCrossRefPubMedGoogle Scholar
  31. Castañé C, Agustí N, Arnó J, Gabarra R, Riudavets J, Comas-Angelet J, Alomar O (2013) Taxonomic identification of Macrolophus pygmaeus and Macrolophus melanotoma based on morphometry and molecular markers. Bull Entomol Res 103(2):204–215.  https://doi.org/10.1017/S0007485312000545CrossRefPubMedGoogle Scholar
  32. Chen Y, Giles KL, Payton ME, Greenstone MH (2000) Identifying key cereal aphid predators by molecular gut analysis. Mol Ecol 9(11):1887–1898.  https://doi.org/10.1046/j.1365-294x.2000.01100.xCrossRefPubMedGoogle Scholar
  33. Chen Q, Li B, Liu P, Lan C, Zhan Z, Weng Q (2013) Development and evaluation of specific PCR and LAMP assays for the rapid detection of Phytophthora melonis. Eur J Plant Pathol 137(3):597–607.  https://doi.org/10.1007/s10658-013-0273-9CrossRefGoogle Scholar
  34. Chomczynski P, Rymaszewski M (2006) Alkaline polyethylene glycol-based method for direct PCR from bacteria, eukaryotic tissue samples, and whole blood. BioTechniques 40(4):454–458.  https://doi.org/10.2144/000112149CrossRefPubMedGoogle Scholar
  35. Dabert M (2006) DNA markers in the phylogenetics of Acari. Biol Lett 43:97–107Google Scholar
  36. van Dam P, Fokkens L, Schmidt SM, Linmans JH, Kistler HC, Ma JL, Rep M (2016) Effector profiles distinguish formae speciales of Fusarium oxysporum. Environ Microbiol 18(11):4087–4102.  https://doi.org/10.1111/1462-2920.13445CrossRefPubMedGoogle Scholar
  37. Danks C, Barker I (2000) On-site detection of plant pathogens using lateral-flow devices. EPPO Bull 30(3–4):421–426.  https://doi.org/10.1111/j.1365-2338.2000.tb00922.xCrossRefGoogle Scholar
  38. Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarman SN (2013) Quantifying sequence proportions in a DNA-based diet study using ion torrent amplicon sequencing: which counts count? Mol Ecol Resour 13(4):620–633.  https://doi.org/10.1111/1755-0998.12103CrossRefPubMedGoogle Scholar
  39. Dong Z, Liu P, Li B, Chen G, Weng Q, Chen Q (2015) Loop-mediated isothermal amplification assay for sensitive and rapid detection of Phytophthora capsici. Can J Plant Pathol 37(4):485–494.  https://doi.org/10.1080/07060661.2015.1119733CrossRefGoogle Scholar
  40. Dreo T, Pirc M, Ramšak Ž, Pavšic J, Milavec M, Zel J, Gruden K (2014) Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Anal Bioanal Chem 406(26):6513–6528.  https://doi.org/10.1007/s00216-014-8084-1CrossRefPubMedGoogle Scholar
  41. Duan YB, Ge CY, Zhang XK, Wang JX, Zhou MG (2014) Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on Loop-Mediated Isothermal Amplification. PLoS One 9:e111094.  https://doi.org/10.1371/journal.pone.0111094CrossRefPubMedPubMedCentralGoogle Scholar
  42. Franco Ortega S, Tomlinson J, Hodgetts J, Spadaro D, Gullino ML, Boonham N (2018a) Development of loop-mediated isothermal amplification assays for the detection of seedborne fungal pathogens, Fusarium fujikuroi and Magnaporthe oryzae, in rice seeds. Plant Dis 102:1549–1558.  https://doi.org/10.1094/PDIS-08-17-1307-RECrossRefGoogle Scholar
  43. Franco Ortega S, Tomlinson J, Gilardi G, Spadaro D, Gullino ML, Garibaldi A, Boonham N (2018b) Rapid detection of Fusarium oxysporum f.sp. lactucae on soil, lettuce seeds and plants using loop-mediated isothermal amplification. Plant Pathol 67:1462–1473.  https://doi.org/10.1111/ppa.12855CrossRefGoogle Scholar
  44. Fribourg CE, Nakashima J (1984) An improved latex agglutination test for routine detection of potato viruses. Potato Res 27(2):237–249CrossRefGoogle Scholar
  45. Frisvad JC (2014) Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol 5:773.  https://doi.org/10.3389/fmicb.2014.00773CrossRefPubMedGoogle Scholar
  46. Furlong MJ (2015) Knowing your enemies: integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests. Insect Sci 22(1):6–19.  https://doi.org/10.1111/1744-7917.12157CrossRefPubMedGoogle Scholar
  47. Ge C, Sun JT, Cui YN, Hong XY (2013) Rapid development of 36 polymorphic microsatellite markers for Tetranychus truncatus by transferring from Tetranychus urticae. Exp Appl Acarol 61(2):195–212.  https://doi.org/10.1007/s10493-013-9684-8CrossRefPubMedGoogle Scholar
  48. Gherbawy Y, El-Deeb B, Hassan S, Altalhi A, Rai M (2008) Molecular markers for Fusarium oxysporum formae speciales characterization. In: Gherbawy Y, Mach R, Rai M (eds) Current advances in molecular mycology. Novapublishers, NewYork. Chapter 6Google Scholar
  49. Ghosh R, Nagavardhini A, Sengupta A, Sharma M (2015) Development of Loop-Mediated Isothermal Amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris – wilt pathogen of chickpea. BMC Res Notes 8:997.  https://doi.org/10.1186/s13104-015-0997-zCrossRefGoogle Scholar
  50. Gilardi G, Webb K, Ortu G, Gullino ML, Garibaldi A (2016) Real-time PCR for rapid in planta detection of Plectosphaerella cucumerina on wild rocket (Diplotaxis tenuifolia). Phytopathol Mediterr 55:285–292Google Scholar
  51. Gillespie RG, Roderick GK (2002) Arthropods on islands: colonization, speciation, and conservation. Annu Rev Entomol 47:595–632.  https://doi.org/10.1146/annurev.ento.47.091201.145244CrossRefPubMedGoogle Scholar
  52. Gómez-Martinez MA, Pina T, Aguilar-Fenollosa E, Jaques JA, Hurtado MA. (2019) Tracking mite trophic interactions by multiplex PCR. Pest Manag Sci.  https://doi.org/10.1002/ps.5555CrossRefGoogle Scholar
  53. Gómez-Polo P, Alomar O, Castañé C, Riudavets J, Agustí N (2013) Identification of Orius spp. (Hemiptera: Anthocoridae) in vegetable crops using molecular techniques. Biol Control 67(3):440–445.  https://doi.org/10.1016/j.biocontrol.2013.09.017CrossRefGoogle Scholar
  54. Gómez-Polo P, Traugott M, Alomar O, Castañé C, Rojo S, Agustí N (2014) Molecular identification of six common syrphid species of Mediterranean vegetable crops and their parasitism using multiplex PCR. J Pest Sci 87:371–378CrossRefGoogle Scholar
  55. Gómez-Polo P, Alomar O, Castañé C, Lundgren JG, Piñol J, Agustí N (2015) Molecular assessment of predation by hoverflies (Diptera: Syrphidae) in Mediterranean lettuce crops. Pest Manag Sci 71(9):1219–1227.  https://doi.org/10.1002/ps.3910CrossRefPubMedGoogle Scholar
  56. Gomez-Polo P, Alomar O, Castañé C, Agustí N (2016) Molecular tracking of arthropod predator–prey interactions in Mediterranean lettuce crops. Food Webs 9:18–24.  https://doi.org/10.1016/j.fooweb.2016.01.001CrossRefGoogle Scholar
  57. González-Chang M, Wratten SD, Lefort MC, Boyer S (2016) Food webs and biological control. A review of molecular tools used to reveal trophic interactions in agricultural systems. Food Webs 9:4–11.  https://doi.org/10.1016/j.fooweb.2016.04.003CrossRefGoogle Scholar
  58. Greenstone MH (1996) Serological analysis of arthropod predation: past, present and future. In: Symondson WOC, Liddell JE (eds) The ecology of agricultural pests. Chapman & Hall, Londres, pp 267–321Google Scholar
  59. Greenstone MH (2006) Molecular methods for assessing insect parasitism. B Entomol Res 96(1):1–13.  https://doi.org/10.1079/BER2005402CrossRefGoogle Scholar
  60. Gu XB, Liu GH, Song HQ, Liu TY, Yang GY, Zhu XQ (2014) The complete mitochondrial genome of the scab mite Psoroptes cuniculi (Arthropoda: Arachnida) provides insights into Acari phylogeny. Parasites Vector 7:340.  https://doi.org/10.1186/1756-3305-7-340CrossRefGoogle Scholar
  61. Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11(4):591–611.  https://doi.org/10.1111/j.1755-0998.2011.03014.xCrossRefPubMedGoogle Scholar
  62. Gurr GM, You M (2016) Conservation biological control of pests in the molecular era: new opportunities to adress old constraints. Front Plant Sci 6:1256.  https://doi.org/10.3389/fpls.2015.01255CrossRefGoogle Scholar
  63. Gutiérrez-Aguirre I, Rački N, Dreo T, Ravnikar M (2015) Droplet digital PCR for absolute quantification of pathogens. Methods Mol Biol 1302:331–347.  https://doi.org/10.1007/978-1-4939-2620-6_24CrossRefPubMedGoogle Scholar
  64. Haegi A, Catalano V, Luongo L, Vitale S, Scotton M, Ficcadenti N, Belisario A (2013) A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes. Phytopathology 103(8):802–810.  https://doi.org/10.1094/PHYTO-11-12-0293-RCrossRefGoogle Scholar
  65. Harper GL, King RA, Dodd CS, Harwood JD, Glen DM, Bruford MW, Symondson WOC (2005) Rapid screening of invertebrate predators for multiple prey DNA targets. Mol Ecol 14:819–827.  https://doi.org/10.1111/j.1365-294X.2005.02442.xCrossRefPubMedGoogle Scholar
  66. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6(10):986–994.  https://doi.org/10.1101/gr.6.10.986CrossRefPubMedGoogle Scholar
  67. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610.  https://doi.org/10.1021/ac202028gCrossRefPubMedPubMedCentralGoogle Scholar
  68. Hirano Y, Arie T (2009) Variation and phylogeny of Fusarium oxysporum isolates based on nucleotide sequences of polygalacturonase genes. Microbes Environ 24(2):113–120.  https://doi.org/10.1264/jsme2.ME08554CrossRefPubMedGoogle Scholar
  69. Hodgetts J, Karamura G, Johnson G, Hall J, Perkins K, Beed F, Nakato V, Grant M, Studholme DJ, Boonham N, Smith J (2015) Development of a lateral flow device for in-field detection and evaluation of PCR-based diagnostic methods for Xanthomonas campestris pv. musacearum, the causal agent of banana Xanthomonas wilt. Plant Pathol 64(3):559–567.  https://doi.org/10.1111/ppa.12289CrossRefGoogle Scholar
  70. Hou Y, Ma X, Wan W, Long N, Zhang J, Tan Y, Duan S, Zeng Y, Dong Y (2016) Comparative genomics of pathogens causing brown spot disease of tobacco: Alternaria longipes and Alternaria alternata. PLoS One 11:e0155258.  https://doi.org/10.1371/journal.pone.0155258CrossRefPubMedPubMedCentralGoogle Scholar
  71. Hurtado M, Agustí N, Sabater-Muñoz B (2008a) Aplicación de técnicas moleculares al control biológico de plagas. In: Jacas JA, Urbaneja A (eds) Control biológico de plagas agrícolas. Futuro del control biológico. Phytoma-España, S.L, Phytoma-España, pp 453–468Google Scholar
  72. Hurtado MA, Ansaloni T, Cros-Arteil S, Jacas JA, Navajas M (2008b) Sequence analysis of the ribosomal internal transcribed spacers region in spider mites (Prostigmata: Tetranychidae) occurring in citrus orchards in Eastern Spain: use for species discrimination. Ann Appl Biol 153(2):167–174.  https://doi.org/10.1111/j.1744-7348.2008.00250.xCrossRefGoogle Scholar
  73. Hussain T, Singh BP, Anwar F (2017) Development of specific marker for PCR diagnostic of late blight of potato caused by Phytophthora infestans using RAPD based SCAR methodology. J Saudi Soc Agric Sci 16(4):299–305.  https://doi.org/10.1016/j.jssas.2015.10.001CrossRefGoogle Scholar
  74. Jeyaprakash A, Hoy MA (2009) First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol 47(1):1–18.  https://doi.org/10.1007/s10493-008-9203-5CrossRefPubMedGoogle Scholar
  75. Julich S, Riedel M, Kielpinski M, Urban M, Kretschmer R, Wagner S, Fritzsche W, Henkel T, Möller R, Werres S (2011) Development of a lab-on-a-chip device for diagnosis of plant pathogens. Biosens Bioelectron 26(10):4070–4075.  https://doi.org/10.1016/j.bios.2011.03.035CrossRefPubMedGoogle Scholar
  76. Kamenova S, Bartley TJ, Bohan D, Boutain JR, Colautti RI, Domaizon I, Fontaine C, Lemainque A, Le Viol I, Mollot G, Perga ME, Ravigné V, Massol F (2017) Invasions toolkit: current methods for tracking the spread and impact of invasive species. Adv Ecol Res 56:85–182.  https://doi.org/10.1016/bs.aecr.2016.10.009CrossRefGoogle Scholar
  77. Kaufman TC, Severson DW, Robinson GE (2002) The Anopheles genome and comparative insect genomics. Science 298(5591):97–98.  https://doi.org/10.1126/science.1077901CrossRefPubMedGoogle Scholar
  78. King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17(4):947–963.  https://doi.org/10.1111/j.1365-294X.2007.03613.xCrossRefPubMedGoogle Scholar
  79. King RA, Moreno-Ripoll R, Agustí N, Shayler SP, Bell JR, Bohan DA, Symondson WOC (2011) Multiplex reactions for the molecular detection of predation on pest and non-pest invertebrates in agroecosystems. Mol Ecol Resour 11(2):370–373.  https://doi.org/10.1111/j.1755-0998.2010.02913.xCrossRefPubMedGoogle Scholar
  80. Koo C, Malapi-Wight M, Kim HS, Cifci OS, Vaughn-Diaz VL, Ma B, Kim S, Abdel-Raziq H, Ong K, Jo YK, Gross DC, Shim WB (2013) Development of a real-time microchip PCR system for portable plant disease diagnosis. PLoS One 8:e82704.  https://doi.org/10.1371/journal.pone.0082704CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kordalewska M, Brillowska-Dąbrowska A, Jagielski T, Dworecka-Kaszak B (2015) PCR and real-time PCR assays to detect fungi of Alternaria alternata species. Acta Biochim Pol 62:707–712CrossRefGoogle Scholar
  82. Krawczyk K, Uszczyńska-Ratajczak B, Majewska A, Borodynko-Filas N (2017) DNA microarray-based detection and identification of bacterial and viral pathogens of maize. J Plant Dis Protect 124(6):577–583.  https://doi.org/10.1073/pnas.242579699CrossRefGoogle Scholar
  83. Kristensen R, Gauthier G, Berdal KG, Hamels S, Remacle J, Holst-Jensen A (2007) DNA microarray to detect and identify trichothecene- and moniliformin-producing Fusarium species. J Appl Microbiol 102(4):1060–1070.  https://doi.org/10.1111/j.1365-2672.2006.03165.xCrossRefPubMedGoogle Scholar
  84. Kunjeti SG, Anchieta A, Martin FN, Choi YJ, Thines M, Michemore RW, Koike ST, Tsuchida C, Mahaffee W, Subbarao KV, Klosterman SJ (2016) Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR. Phytopathology 106(11):1426–1437.  https://doi.org/10.1094/PHYTO-03-16-0143-RCrossRefPubMedGoogle Scholar
  85. Landry BS, Dextraze L, Boivin G (1993) Random amplified polymorphic DNA markers for DNA fingerprinting and genetic variability assessment of minute parasitic wasp species (Hymenoptera, Mymaridae and Trichogrammatidae) used in biological control programs of phytophagous insects. Genome 36(3):580–587CrossRefGoogle Scholar
  86. Lawrence DP, Rotondo F, Gannibal PB (2016) Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol Prog 15(1):3.  https://doi.org/10.1007/s11557-015-1144-xCrossRefGoogle Scholar
  87. Leiminger J, Bäßler E, Knappe C, Bahnweg G, Hausladen H (2014) Quantification of disease progression of Alternaria spp. on potato using real-time PCR. Eur J Plant Pathol 141(2):295–309.  https://doi.org/10.1016/S0378-1097(03)00759-6CrossRefGoogle Scholar
  88. Lenarčič R, Morisset D, Pirc M, Llop P, Ravnikar M, Dreo T (2014) Loop-mediated isothermal amplification of specific endoglucanase gene sequence for detection of the bacterial wilt pathogen Ralstonia solanacearum. PLoS One 9(4):e96027.  https://doi.org/10.1371/journal.pone.0096027CrossRefPubMedPubMedCentralGoogle Scholar
  89. Levesque CA, De Cock A (2004) Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res 108(12):1363–1383.  https://doi.org/10.1017/S0953756204001431CrossRefPubMedGoogle Scholar
  90. Li T, Chen XL, Hong XY (2009) Population genetic structure of Tetranychus urticae and its sibling species Tetranychus cinnabaribus (Acari: Tetranychidae) in China as inferred from microsatellite data. Ann Entomol Soc Am 102(4):674–683.  https://doi.org/10.1603/008.102.0412CrossRefGoogle Scholar
  91. Li M, Asano T, Suga H, Kageyama K (2011) A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum , and a survey of their occurrence in strawberry production areas of Japan. Plant Dis 95(10):1270–1278.  https://doi.org/10.1094/PDIS-01-11-0076CrossRefPubMedGoogle Scholar
  92. Li B, Liu P, Xie S, Yin R, Weng Q, Chen Q (2015) Specific and sensitive detection of Phytophthora nicotianae by nested PCR and loop-mediated isothermal amplification assays. J Phytopathol 163(3):185–193.  https://doi.org/10.1111/jph.12305CrossRefGoogle Scholar
  93. Lievens B, Justé A, Willems KA (2012) Fungal plant pathogen detection in plant and soil samples using DNA macroarrays. Methods Mol Biol 835:491–507.  https://doi.org/10.1007/978-1-61779-501-5_30CrossRefPubMedGoogle Scholar
  94. Lin YH, Chen KS, Chang JY, Wan YL, Hsu CC, Huang JW, Chang PF (2010) Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. New Biotechnol 27(4):409–418.  https://doi.org/10.1016/j.nbt.2010.05.005CrossRefGoogle Scholar
  95. Ling J, Zhang J, Zeng F, Cao Y, Xie B, Yang Y (2016) Comparative genomics provide a rapid detection of Fusarium oxysporum f. sp. conglutinans. J Integr Agric 15(4):822–831.  https://doi.org/10.1016/S2095-3119(15)61237-0CrossRefGoogle Scholar
  96. Loxdale HD, Lushai G (1998) Molecular markers in entomology. B Entomol Res 88(6):577–600.  https://doi.org/10.1017/S0007485300054250CrossRefGoogle Scholar
  97. Martin FN, Blair JE, Coffey MD (2014) A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora. Fungal Genet Biol 66:19–32.  https://doi.org/10.1016/j.fgb.2014.02.006CrossRefPubMedGoogle Scholar
  98. Matsuda T, Hinomoto N, Singh RN, Gotoh T (2012) Molecular-based identification and phylogeny of Oligonychus species (Acari: Tetranychidae). J Econ Entomol 105(3):1043–1050.  https://doi.org/10.1603/EC11404CrossRefPubMedGoogle Scholar
  99. Mbofung GCY, Pryor BM (2010) A PCR-based assay for detection of Fusarium oxysporum f. sp. lactucae in lettuce seed. Plant Dis 94(7):860–866.  https://doi.org/10.1094/PDIS-94-7-0860CrossRefPubMedGoogle Scholar
  100. Mbofung GY, Hong SG, Pryor BM (2007) Phylogeny of Fusarium oxysporum f. sp. lactucae inferred from mitochondrial small subunit, elongation factor 1-alpha, and nuclear ribosomal intergenic spacer sequence data. Phytopathology 97:87–98.  https://doi.org/10.1094/PHYTO-97-0087CrossRefPubMedGoogle Scholar
  101. Mirmajlessi SM, Loit E, Mand M, Mansouripour SM (2016) Real-time PCR applied to study on plant pathogens: potential applications in diagnosis – a review. Plant Protect Sci 51(4):177–190.  https://doi.org/10.17221/104/2014-PPSCrossRefGoogle Scholar
  102. Monzó C, Sabater-Muñoz B, Urbaneja A, Castañera P (2010) Tracking medfly predation by the wolf spider, Pardosa cribata Simon, in citrus orchards using PCR-based gut-content analysis. B Entomol Res 100(2):145–152.  https://doi.org/10.1017/S0007485309006920CrossRefGoogle Scholar
  103. Monzó C, Sabater-Muñoz B, Urbaneja A, Castañera P (2011) The ground beetle Pseudophonus rufipes revealed as predator of Ceratitis capitata in citrus orchards. Biol Control 56(1):17–21.  https://doi.org/10.1016/j.biocontrol.2010.09.004CrossRefGoogle Scholar
  104. Moreno-Ripoll R, Gabarra R, Symondson WOC, King RA, Agustí N (2012) Trophic relationships between predators, whiteflies and their parasitoids in tomato greenhouses: a molecular approach. B Entomol Res 102(4):415–423.  https://doi.org/10.1017/S0007485311000836CrossRefGoogle Scholar
  105. Murray RA, Solomon MG (1978) A rapid technique for analysing diets of invertebrate predators by electrophoresis. Ann Appl Biol 90:7–10.  https://doi.org/10.1111/j.1744-7348.1978.tb02603.xCrossRefGoogle Scholar
  106. Navajas M, Boursot P (2003) Nuclear ribosomal DNA monophyly versus mitochondrial DNA polyphyly in two closely related mite species: the influence of life history and molecular drive. P Roy Soc Lond B Bio 270(Suppl 1):S124–S127.  https://doi.org/10.1098/rsbl.2003.0034CrossRefGoogle Scholar
  107. Navajas M, Perrot-Minnot JM, Lagnel J, Migeon A, Bourse T, Cornuet JM (2002) Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers. Insect Mol Biol 11(2):157–165.  https://doi.org/10.1046/j.1365-2583.2002.00320.xCrossRefPubMedGoogle Scholar
  108. Nishimura S, Hinomoto N, Takafuji A (2003) Isolation, characterization, inheritance and linkage of microsatellite markers in Tetranychus kanzawai (Acari: Tetranychidae). Exp Appl Acarol 31:93–103CrossRefGoogle Scholar
  109. Nowakowska JA, Malewski T, Tereba A, Oszako T (2017) Rapid diagnosis of pathogenic Phytophthora species in soil by real-time PCR. Forest Pathol 47:e12303.  https://doi.org/10.1111/efp.12303CrossRefGoogle Scholar
  110. Pascual-Ruiz S, Gómez-Martínez MA, Ansaloni T, Segarra-Moragues JG, Sabater-Muñoz B, Jacas JA, Hurtado-Ruiz MA (2014) Genetic structure of a phytophagous mite species affected by crop practices: the case of Tetranychus urticae in clementine mandarins. Exp Appl Acarol 62(4):477–498.  https://doi.org/10.1007/s10493-013-9755-xCrossRefPubMedGoogle Scholar
  111. Pasquali M, Acquadro A, Balmas V, Migheli Q, Gullino ML, Garibaldi A (2004) Development of PCR primers for a new Fusarium oxysporum pathogenic on Paris daisy (Argyranthemum frutescens L.). Eur J Plant Pathol 110(1):7–11CrossRefGoogle Scholar
  112. Pasquali M, Dematheis F, Gullino ML, Garibaldi A (2007) Identification of race 1 of Fusarium oxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterized amplified region technique. Phytopathology 97(8):987–996.  https://doi.org/10.1094/PHYTO-97-8-0987CrossRefPubMedGoogle Scholar
  113. Patel JS, Brennan MS, Khan A, Ali GS (2015) Implementation of loop-mediated isothermal amplification methods in lateral flow devices for the detection of Rhizoctonia solani. Can J Plant Pathol 37:118–129.  https://doi.org/10.1080/07060661.2014.996610CrossRefGoogle Scholar
  114. Peng J, Zhang H, Chen F, Zhang X, Xie Y, Hou X, Pu J (2014) Rapid and quantitative detection of Fusarium oxysporum f. sp. cubense race 4 in soil by real-time fluorescence loop-mediated isothermal amplification. J Appl Microbiol 117(6):1740–1749.  https://doi.org/10.1111/jam.12645CrossRefPubMedGoogle Scholar
  115. Pérez-Sayas C. 2016. Determinación de las relaciones filogenéticas y tróficas de la acarofauna en cítricos. PhD Thesis, Universitat Jaume I de Castelló, Castellón, SpainGoogle Scholar
  116. Pérez-Sayas C, Pina T, Gómez-Martínez MA, Camañes G, Ibáñez-Gual MV, Jaques JA, Hurtado MA (2015) Disentangling mite predator-prey relationships by multiplex PCR. Mol Ecol Resour 15(6):1330–1345.  https://doi.org/10.1111/1755-0998.12409CrossRefPubMedGoogle Scholar
  117. Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21(8):1931–1950.  https://doi.org/10.1111/j.1365-294X.2011.05403.xCrossRefPubMedGoogle Scholar
  118. Prokopowich CD, Gregory TR, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46(1):48–50.  https://doi.org/10.1139/g02-103CrossRefPubMedGoogle Scholar
  119. Rački N, Dreo T, Gutierrez-Aguirre I, Blejec A, Ravnikar M (2014) Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 10(1):42.  https://doi.org/10.1186/s13007-014-0042-6CrossRefPubMedPubMedCentralGoogle Scholar
  120. Rahman A, Miles TD, Martin FN, Quesada-Ocampo LM (2017) Molecular approaches for biosurveillance of the cucurbit downy mildew pathogen, Pseudoperonospora cubensis. Can J Plant Pathol 39:282–296.  https://doi.org/10.1080/07060661.2017.1357661CrossRefGoogle Scholar
  121. Raso A, Biassoni R (2014) Twenty years of qPCR: a mature technology? In: Methods in molecular biology, Clifton, pp 1–3Google Scholar
  122. Ravindran A, Lévy J, Pierson E, Gross DC (2015) Loop-mediated isothermal amplification procedure (LAMP) for detection of the potato zebra chip pathogen “Candidatus Liberibacter solanacearum”. Methods Mol Biol 1302:85–97.  https://doi.org/10.1007/978-1-4939-2620-6_7CrossRefPubMedGoogle Scholar
  123. Roderick GK, Navajas M (2003) Genes in new environments: genetics and evolution in biological control. Nat Rev Genet 4(11):889–899.  https://doi.org/10.1038/nrg1201CrossRefPubMedGoogle Scholar
  124. Roehrdanz RL, Degrugillier ME, Black WC (2002) Novel rearrangements of arthropod mitochondrial DNA detected with Long-PCR: applications to arthropod phylogeny and evolution. Mol Biol Evol 19(6):841–849.  https://doi.org/10.1093/oxfordjournals.molbev.a004141CrossRefPubMedGoogle Scholar
  125. Romeu-Dalmau C, Piñol J, Agustí N (2012) Detecting aphid predation by earwigs in organic citrus orchards using molecular markers. B Entomol Res 102(5):566–572.  https://doi.org/10.1017/S0007485312000132CrossRefGoogle Scholar
  126. Roossinck MJ, Martin DP, Roumagnac P (2015) Plant virus metagenomics: advances in virus discovery. Phytopathology 105(6):716–727.  https://doi.org/10.1094/PHYTO-12-14-0356-RVWCrossRefPubMedGoogle Scholar
  127. Ros VID, Breeuwer JAJ (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Exp Appl Acarol 42(4):239–262.  https://doi.org/10.1007/s10493-007-9092-zCrossRefPubMedPubMedCentralGoogle Scholar
  128. Sabater-Muñoz B, Pascual-Ruiz S, Gómez-Martínez MA, Jacas JA, Hurtado MA (2012) Isolation and characterization of polymorphic microsatellite markers in Tetranychus urticae and cross amplification in other Tetranychidae and Phytoseiidae species of economic importance. Exp Appl Acarol 57(1):37–51.  https://doi.org/10.1007/s10493-012-9529-xCrossRefPubMedGoogle Scholar
  129. Sanzani SM, Li Destri Nicosia MG, Faedda R, Cacciola SO, Schena L (2014) Use of quantitative PCR detection methods to study biocontrol agents and phytopathogenic fungi and oomycetes in environmental samples. J Phytopathol 162(1):1–13.  https://doi.org/10.1111/jph.12147CrossRefGoogle Scholar
  130. Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 24(3):250–258.  https://doi.org/10.1080/07060660209507006CrossRefGoogle Scholar
  131. Schroeder KL, Okubara PA, Tambong JT, Lévesque CA, Paulitz TC (2006) Identification and quantification of pathogenic Pythium spp. from soils in Eastern Washington using real-time polymerase chain reaction. Phytopathology 96(6):637–647.  https://doi.org/10.1094/PHYTO-96-0637CrossRefPubMedGoogle Scholar
  132. Silva IMMS, Honda J, van Kan F, Hu JG, Neto L, Pintureau B, Stouthamer R (1999) Molecular differentiation of five Trichogramma species occurring in Portugal. Biol Control 16(2):177–184.  https://doi.org/10.1006/bcon.1999.0755CrossRefGoogle Scholar
  133. Sint D, Raso L, Traugott M (2012) Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods Ecol Evol 3(5):898–905.  https://doi.org/10.1111/j.2041-210X.2012.00215.xCrossRefPubMedPubMedCentralGoogle Scholar
  134. Solomon MG, Fitzgerald JD, Murray RA (1996) Electrophoretic approaches to predator-prey interactions. In: Symondson WOC, Liddell JE (eds) The ecology of agricultural pests- biochemical approaches. Chapman and Hall, London, pp 457–468Google Scholar
  135. Srinivasan K, Gilardi G, Spadaro D, Garibaldi A, Gullino ML (2010) Molecular characterization through IGS sequencing of formae speciales of Fusarium oxysporum pathogenic on lamb’s lettuce. Phytopathol Mediterr 49:309–320.  https://doi.org/10.14601/Phytopathol_Mediterr-5460CrossRefGoogle Scholar
  136. Srinivasan K, Spadaro D, Poli A, Gilardi G, Gullino ML, Garibaldi A (2012) Genetic diversity and pathogenicity of Fusarium oxysporum isolated from wilted rocket plants in Italy. Phytoparasitica 40(2):157–170.  https://doi.org/10.1007/s12600-011-0207-zCrossRefGoogle Scholar
  137. Stobbe AH, Daniels J, Espindola AS, Verma R, Melcher U, Ochoa-Corona F, Garzon C, Fletcher J, Schneider W (2013) E-probe Diagnostic Nucleic acid Analysis (EDNA): a theoretical approach for handling of next generation sequencing data for diagnostics. J Microbiol Methods 94(3):356–366.  https://doi.org/10.1016/j.mimet.2013.07.002CrossRefPubMedGoogle Scholar
  138. Stobbe AH, Schneider WL, Hoyt PR, Melcher U (2014) Screening metagenomic data for viruses using the E-Probe diagnostic nucleic acid assay. Phytopathology 104(10):1125–1129.  https://doi.org/10.1094/PHYTO-11-13-0310-RCrossRefPubMedGoogle Scholar
  139. Suga H, Hirayama Y, Morishima M, Suzuki T, Kageyama K, Hyakumachi M (2013) Development of PCR primers to identify Fusarium oxysporum f. sp. fragariae. Plant Dis 97(5):619–625.  https://doi.org/10.1094/PDIS-07-12-0663-RECrossRefPubMedGoogle Scholar
  140. Sunderland KD, Crook NE, Stacey D, Fuller BJ (1987) A study of feeding by polyphagous predators on cereal aphids using ELISA and gut dissection. J Appl Ecol 24(3):907–933.  https://doi.org/10.2307/2403989CrossRefGoogle Scholar
  141. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA (1992) Quantitation of targets for PCR by use of limiting dilution. BioTechniques 13(13):444–449PubMedGoogle Scholar
  142. Symondson WOC, Erickson ML, Liddell JE, Jayawardena KGI (1999) Amplified detection, using a monoclonal antibody, of an aphid-specific epitope exposed during digestion in the gut of a predator. Insect Biochem Mol 29(10):873–882CrossRefGoogle Scholar
  143. Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594.  https://doi.org/10.1146/annurev.ento.47.091201.145240CrossRefPubMedGoogle Scholar
  144. Talley J, Warren FHJB, Torrance L, Jones RAC (1980) A simple kit for detection of plant viruses by the latex serological test. Plant Pathol 29:77–79.  https://doi.org/10.1111/j.1365-3059.1980.tb01184.xCrossRefGoogle Scholar
  145. Tixier MS, Hernandes FA, Guichou S, Kreiter S (2011) The puzzle of DNA sequences of Phytoseiidae (Acari: Mesostigmata) in the public GenBank database. Invertebr Syst 25(5):389–406.  https://doi.org/10.1071/IS11013CrossRefGoogle Scholar
  146. Tomlinson J, Dickinson MJ, Boonham N (2010a) Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology 100(2):143–149.  https://doi.org/10.1094/PHYTO-100-2-0143CrossRefPubMedGoogle Scholar
  147. Tomlinson JA, Dickinson MJ, Boonham N (2010b) Detection of Botrytis cinerea by loop-mediated isothermal amplification. Lett Appl Microbiol 51(6):650–657.  https://doi.org/10.1111/j.1472-765X.2010.02949.xCrossRefPubMedGoogle Scholar
  148. Tyagi K, Kumar V, Singha D, Chakraborty R (2015) Morphological and DNA barcoding evidence for invasive pest thrips, Thrips parvispinus (Thripidae: Thysanoptera), newly recorded from India. J Insect Sci 15(1):105.  https://doi.org/10.1093/jisesa/iev087CrossRefPubMedPubMedCentralGoogle Scholar
  149. Uesugi R, Osakabe M (2007) Isolation and characterization of microsatellite loci in the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Mol Ecol Notes 7:290–292.  https://doi.org/10.1111/j.1471-8286.2006.01583.xCrossRefGoogle Scholar
  150. Uesugi R, Kunimoto Y, Osakabe M (2009) The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse. Exp Appl Acarol 47(2):99–109.  https://doi.org/10.1007/s10493-008-9201-7CrossRefPubMedGoogle Scholar
  151. Unruh TR, Woolley JB (1999) Molecular methods in classical biological control. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 57–85CrossRefGoogle Scholar
  152. Validov SZ, Kamilova FD, Lugtenberg BJJ (2011) Monitoring of pathogenic and non-pathogenic Fusarium oxysporum strains during tomato plant infection. Microb Biotechnol 4(1):82–88.  https://doi.org/10.1111/j.1751-7915.2010.00214.xCrossRefPubMedGoogle Scholar
  153. Wang Y, Zhang H, Li H, Miao X (2011) Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS One 6(4):e18644.  https://doi.org/10.1371/journal.pone.0018644.t003CrossRefPubMedPubMedCentralGoogle Scholar
  154. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(1):697–703CrossRefGoogle Scholar
  155. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322Google Scholar
  156. Wirta HK, Hebert PD, Kaartinen R, Prosser SW, Várkonyi G, Roslin T (2014) Complementary molecular information changes our perception of food web structure. Proc Natl Acad Sci 111(5):1885–1890.  https://doi.org/10.1073/pnas.1316990111CrossRefPubMedGoogle Scholar
  157. Woudenberg JHC, Seidl MF, Groenewald JZ, de Vries M, Stielow JB, Thomma BPHJ, Crous PW (2015) Alternaria section Alternaria: species, formae speciales or pathotypes? Stud Mycol 82:1–21.  https://doi.org/10.1016/j.simyco.2015.07.001CrossRefPubMedGoogle Scholar
  158. Xie L, Hong XY, Xue XF (2006) Population genetic structure of the two-spotted spider mite (Acari: Tetranychidae) from China. Ann Entomol Soc Am 99(5):959–965.  https://doi.org/10.1603/0013-8746(2006)99[959:PGSOTT]2.0.CO;2CrossRefGoogle Scholar
  159. Yang B, Cai J, Cheng X (2011) Identification of astigmatid mites using ITS2 and COI regions. Parasitol Res 108(2):497–503.  https://doi.org/10.1007/s00436-010-2153-yCrossRefPubMedGoogle Scholar
  160. Yli-Mattila T, Paavanen-Huhtala S, Fenton B, Tuovinen T (2000) Species and strain identification of the predatory mite Euseius finlandicus by RAPD-PCR and ITS sequences. Exp Appl Acarol 24(10–11):863–880CrossRefGoogle Scholar
  161. Yuan ML, Wei DD, Wang BJ, Dou W, Wang JJ (2010) The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs. BMC Genomics 11:597.  https://doi.org/10.1186/1471-2164-11-597CrossRefPubMedGoogle Scholar
  162. Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999) Can multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8:2081–2087CrossRefGoogle Scholar
  163. Zhou J, Thompson DK (2002) Challenges in applying microarrays to environmental studies. Curr Opin Biotech 13:204–207.  https://doi.org/10.1016/S0958-1669(02)00319-1CrossRefPubMedGoogle Scholar
  164. Zhu YC, Greenstone MH (1999) Polymerase chain reaction techniques for distinguishing three species and two strains of Aphelinus (Hymenoptera: Aphelinidae) from Diuraphis noxia and Schizaphis graminum (Homoptera: Aphididae). Ann Entomol Soc Am 92(1):71–79.  https://doi.org/10.1093/aesa/92.1.71CrossRefGoogle Scholar
  165. Zhu YC, Burd JD, Elliott NC, Greenstone MH (2000) Specific ribosomal DNA marker for early polymerase chain reaction detection of Aphelinus hordei (Hymenoptera: Aphelinidae) and Aphidius colemani (Hymenoptera: Aphidiidae) from Diuraphis noxia (Homoptera: Aphididae). Ann Entomol Soc Am 93(3):486–491.  https://doi.org/10.1603/0013-8746(2000)093[0486:SRDMFE]2.0.CO;2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Davide Spadaro
    • 1
    • 2
    Email author
  • Nuria Agustí
    • 3
  • Sara Franco Ortega
    • 1
  • Monica A. Hurtado Ruiz
    • 4
  1. 1.Centre of Competence for the Innovation in the Agro-environmental Sector – AGROINNOVAUniversity of TurinGrugliascoItaly
  2. 2.Department of Agricultural, Forestry and Food Sciences (DiSAFA)University of TorinoGrugliascoItaly
  3. 3.Sustainable Plant Protection ProgrammeInstitute of Agrifood Research and Technology (IRTA)Cabrils (Barcelona)Spain
  4. 4.Departament de Ciències Agràries i del Medi Natural, Unitat Associada d’Entomologia Agrícola UJI – Institut Valencià d’Investigacions Agràries (IVIA)Universitat Jaume I (UJI)Castelló de la PlanaSpain

Personalised recommendations