Advertisement

Implementation of IPDM in Strawberries and Other Berries

  • Surendra K. DaraEmail author
Chapter
  • 60 Downloads
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 9)

Abstract

Several high value small fruit crops are grown under greenhouse conditions around the world. Integrated pest and disease management (IPDM) in greenhouse production of small fruits can take advantage of a number of practices for maintaining optimal crop health while ensuring good yields and sustainability. These practices include the use of resistant cultivars and clean plant material free of pests and diseases, effective substrate, irrigation, and nutrient management, regular monitoring and good sanitation practices, substrate disinfestation and sterilization with fumigation alternatives, modifying the environmental conditions to reduce pest and disease pressure, chemical and non-chemical control options, along with biostimulants and beneficial microbes. Several examples of successful use of these tactics are discussed and general IPDM guidelines are presented in this chapter.

Keywords

Small fruits Strawberry Cultural practices Non-chemical alternatives Beneficial microbes Induced resistance Substrate disinfestation Fumigation alternatives Microbial control Entomovectoring 

References

  1. Ahmed MFA, El-Fiki IAI (2017) Effect of biological control of root rot diseases of strawberry using Trichoderma spp. Mid East J Appl Sci 7(3):482–492Google Scholar
  2. Al Mazra’awi MS, Shiopp JL, Broadbent AB, Kevan PG (2006) Dissemination of Beauveria bassiana by honey bees (Hymenoptera: Apidae) for control of tarnished plant bug (Hemiptera: Miridae) on canola. Environ Entomol 35(6):1569–1577CrossRefGoogle Scholar
  3. Alston D (2017) Spider mites in raspberry. Utah Pests Fact Sheet ENT-183-17Google Scholar
  4. Amsalem L, Freeman S, Rav-David D, Nitzani Y, Sztejnberg A, Pertot I, Elad Y (2006) Effect of climatic factors on powdery mildw caused by Sphaerotheca macularis f.sp. fragariae on strawberry. Eur J Plant Pathol 114(3):283–292.  https://doi.org/10.1007/s10658-005-5804-6CrossRefGoogle Scholar
  5. Anandhakumar J, Zeller W (2008) Biological control of red stele (Phytophthora fragariae var. fragariae) and crown rot (P. cactorum) disease of strawberry with rhizobacteria. J Plant Dis Protect 115(2):49–56CrossRefGoogle Scholar
  6. Ansari MA, Shah FA, Butt TM (2008) Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomol Exp Appl 129(3):340–347CrossRefGoogle Scholar
  7. Ansari MA, Shah FA, Butt TM (2010) The entomopathogenic nematode Steinernema kraussei and Metarhizium anisopliae work synergistically in controlling overwintering larvae of the black vine weevil, Otiorhynchus sulcatus, in strawberry growbags. Biocontrol Sci Tech 20(1):99–105CrossRefGoogle Scholar
  8. Archbold DD, Hamilton-Kemp TR, Barth MM, Langlois BE (1997) Indentifying natural volatile compounds that control gray mold (Botrytis cinerea) during postharvest storage of strawberry, blackberry, and grape. J Agric Food Chem 45(10):4032–4037CrossRefGoogle Scholar
  9. Asami DK, Hong Y-J, Barrett DM, Mitchell AE (2003) Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J Agric Food Chem 51(5):1237–1241PubMedCrossRefPubMedCentralGoogle Scholar
  10. Averre CW, Jones RK, Milholland RD (2002) Strawberry diseases and their control. Fruit Disease Information Note No. 5, North Carolina Cooperative Extension Service. https://www.ces.ncsu.edu/depts/pp/notes/oldnotes/fd5.htm. Accessed 5 Nov 2017
  11. Baker BP, Benbrook CM, Groth E III, Lutz Benbrook K (2002) Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods:insights from three US data sets. Food Addit Contam 19(5):427–446.  https://doi.org/10.1080/02652030110113799CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bañuelos GS, Hanson BD (2010) Use of selenium-enriched mustard and canola seed meals as potential bioherbicides and green fertilizer in strawberry production. HortSci 45(10):1567–1572CrossRefGoogle Scholar
  13. Barakat RM, Al-Masri MI (2017) Effect of Trichoderma harzianum in combination with fungicides in controlling gray mould disease (Botrytis cinerea) of strawberry. Am J Plant Sci 8(4):651–665.  https://doi.org/10.4236/ajps.2017.84045CrossRefGoogle Scholar
  14. Benioğlu S, Boz Ö, Yildiz A, Kaşkavalci G, Benioğlu K (2005) Alternative soil solarization treatments for the control of soilborne diseases and weeds of strawberry in the western Anatolia of Turkey. J Phytopathol 153(7–8):423–430CrossRefGoogle Scholar
  15. Bi JL, Toscano NC, Ballmer GR (2002) Greenhouse and field evaluation of six novel insecticides against the greenhouse whitefly Trialeurodes vaporariorum on strawberries. Crop Prot 21(1):49–55.  https://doi.org/10.1016/S0261-2194(01)00063-1CrossRefGoogle Scholar
  16. Bilu A, Dag A, Shaif S, Elad Y (2003) Use of honeybees to disseminate Trichodex (Trichoderma harzianum T39) to strawberry for the control of gray mold (Botrytis cinerea). Phytoparasitica 31(3):296–297Google Scholar
  17. Birch ANE, Jones AT (1988) Levels and components of resistance to Amphorophora idaei in raspberry cultivars containing different resistance genes. Ann Appl Biol 113(3):567–578.  https://doi.org/10.1111/j.1744-7348.1988.tb03334.xCrossRefGoogle Scholar
  18. Bojacá CR, Arias LA, Ahumada DA, Casilimas HA, Schrevens E (2013) Evaluation of pesticide residues in open field and greenhouse tomatoes from Colombia. Food Control 30(2):400–403.  https://doi.org/10.1016/j.foodcont.2012.08.015CrossRefGoogle Scholar
  19. Bruzzese E, Hasan S (1987) Infection of blackberry cultivars by the European blackberry rust fungus, Phragmidium violaceum. J Hortic Sci 62(4):475–479CrossRefGoogle Scholar
  20. Bulger MA, Ellis MA, Madden LV (1988) Influence of temperature and wetness duration on infection of strawberry flowers by Botrytis cinerea and disease incidence of fruit originating from infected flowers. Phytopathology 77(8):1225–1230CrossRefGoogle Scholar
  21. Butt TM, Clarreck NL, Ibrahim L, Williams IH (1998) Honey-bee-mediated infection of pollen beetle (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci Tech 8(4):533–538.  https://doi.org/10.1080/09583159830045CrossRefGoogle Scholar
  22. Camprubí A, Estaún V, El Bakali MA, Garcia-Figueres F, Valvet C (2007) Alternative strawberry production using solarization, metham sodium and beneficial soil microbes as plant protection methods. Agron Sustain Dev 27(3):179–184CrossRefGoogle Scholar
  23. Candido V, D’Addabbo T, Basile M, Castronuovo D, Miccolis V (2008) Greenhouse soil solarization:effect on weeds, nematodes and yield of tomato and melon. Agron Sustain Dev 28(2):221–230CrossRefGoogle Scholar
  24. Carlen C, Faby R, Karjalainen R, Pommier JJ, Steffek R (2004) Control of air borne disease in strawberries with natural and synthetic elicitors. Acta Hortic 649:237–240.  https://doi.org/10.17660/ActaHortic.2004.649.44CrossRefGoogle Scholar
  25. Chen Y, Story R, Samuel-Foo M (2014) Effects of nitrogen and phosphorous fertilization on western flower thrips population level and quality of susceptible and resistant impatiens. Adv Crop Sci Tech 2(4):145.  https://doi.org/10.4172/2329-8863.1000145CrossRefGoogle Scholar
  26. Chow A, Chau A, Heinz KM (2012) Reducing fertilization:a management tactic against western flower thrips on roses. J Appl Entomol 136(7):520–529.  https://doi.org/10.1111/j.1439-0418.2011.01674.xCrossRefGoogle Scholar
  27. Clark JR, Finn CE (2008) New trends in blackberry breeding. Acta Hortic 777:41–48.  https://doi.org/10.17660/ActaHortic.2008.777.2CrossRefGoogle Scholar
  28. Cline WO (2002) Blueberry bud set and yield following the use of fungicides for leaf spot control in North Carolina. Acta Hortic 574:71–74.  https://doi.org/10.17660/ActaHortic.2002.574.7CrossRefGoogle Scholar
  29. Cline WO, Brennn PM, Sherm H (2006) Blueberry disease management in the southeastern United States. Acta Hortic 715:489–492.  https://doi.org/10.17660/ActaHortic.2006.715.74CrossRefGoogle Scholar
  30. Contreras J, Quinto V, Abellán J, Fernández E, Grávalos C, Moros L, Bielza P (2006) Effects of natural insecticides on Frankliniella occidentalis and Orius spp. Integr Control Protected Crops Mediterr Clim IOBC/wprs Bull 29(4):331–336Google Scholar
  31. Daferera DJ, Ziogas BN, Polissiou MG (2003) The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protect 22(1):39–44.  https://doi.org/10.1016/S0261-2194(02)00095-9CrossRefGoogle Scholar
  32. Dara SK (2015a) Integrated pest management. In: Dara SK, Bolda M, Faber B, Fallon J, Sanchez M, Peterson K (eds) Strawberry production manual. Cachuma Resource Conservation District, Santa Maria, pp 61–74Google Scholar
  33. Dara SK (2015b) Twospotted spider mite and its management in strawberries. CAPCA Advis 18(4):56–58Google Scholar
  34. Dara SK (2016) Managing strawberry pests with chemical pesticides and non-chemical alternatives. Int J Fruit Sci.  https://doi.org/10.1080/15538362.2016.1195311CrossRefGoogle Scholar
  35. Dara SK (2017) Microbial control of arthropod pests in small fruits and vegetables in temperate regions. In: Lacey LA (ed) Microbial control of insect and mite pests: from theory to practice. Academic, New York, pp 209–221CrossRefGoogle Scholar
  36. Dara SK, Peck D (2016) Impact of entomopathogenic fungi and beneficial microbes on strawberry growth, health, and yield. UCANR eJournal Strawberries and Vegetables. http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=22709
  37. Dara SK, Peck D (2017) Evaluating beneficial microbe-based products for their impact on strawberry plant growth, health, and fruit yield. UCANR eJournal Strawberries and Vegetables. http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=25122
  38. Dara SK, Dara SR, Dara SS (2013) Endophytic colonization and pest management potential of Beauveria bassiana in strawberries. J Berry Res 3(4):203–211CrossRefGoogle Scholar
  39. Dara SK, Goble TA, Shapiro-Ilan DI (2017) Leveraging the ecology of invertebrate pathogens in microbial control. In: Hajek AE, Shapiro-Ilan DI (eds) Ecology of invertebrate diseases. Wiley, Hoboken, pp 469–494CrossRefGoogle Scholar
  40. Dara SSR, Dara SS, Dara SK, Anderson T (2017a) Fighting plant pathogenic fungi with entomopathogenic fungi and other biologicals. CAPCA Advis 20(1):40–44Google Scholar
  41. Daugovish O, Fennimore SA (2011) Non-fumigant alternatives for managing Macrophomina phaseolina and Fusarium oxysporum in California strawberry. HortSci 46:S175Google Scholar
  42. de los Santos B, Chamorro M, Medina-Mínguez JJ, Capote N, Aguado A, Romero F (2016) Emerging diseases in strawberry crop: charcoal rot and Fusarium wilt. In: Husaini AM, Nwei D (eds) Strawberry: growth, development and diseases. CABI, Croydon, pp 212–250CrossRefGoogle Scholar
  43. Dihazi A, Jaiti F, Zouine J, El Hassni M, El Hadrami I (2003) Effect of salicylic acid on phenolic compounds related to date palm resistance to Fusarium oxysporum f. sp. albedinis. Phytopathol Mediterr 42(1):9–16Google Scholar
  44. Dik AJ, Wubben JP (2004) Epidemiology of Botrytis cinerea diseases in greenhouses. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kulwer Academic Press, Dordrecht, pp 319–333Google Scholar
  45. Eckert JW, Ogawa JM (1988) The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Annu Rev Phytopathol 26:433–469.  https://doi.org/10.1146/annurev.py.26.090188.002245CrossRefGoogle Scholar
  46. Ehlenfeldt MK, Polashock JJ, Stretch AW (2010) Ranking cultivated blueberry for mummy berry blight and fruit infection incidence using resampling and principal components analysis. HortSci 45(8):1205–1210CrossRefGoogle Scholar
  47. Eikemo H, Stensvand A, Tronsmo AM (2003) Induced resistance as a possible means to control diseases of strawberry caused by Phytophthora spp. Plant Dis 87(4):345–350.  https://doi.org/10.1094/PDIS.2003.87.4.345CrossRefPubMedGoogle Scholar
  48. Elad Y, Yunis H, Katan K (1992) Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathol 41(1):41–46.  https://doi.org/10.1111/j.1365-3059.1992.tb02314.xCrossRefGoogle Scholar
  49. Ellis MA (2008) Botrytis fruit rot “gray mold” of strawberry, raspberry, and blackberry. Ohio State University Extension Fact Sheet PLPATH-FRU-36Google Scholar
  50. Ellis MA, Williams RN, Converse RH, Williamson B (1991) Compendium of raspberry and blackberry diseases and insects. APS Press, St PaulGoogle Scholar
  51. Faedi W, Mourgues F, Rosati C (2002) Strawberry breeding and varieties:situation and perspectives. Acta Hortic 567(1):51–59.  https://doi.org/10.17660/ActaHortic.2002.567.1CrossRefGoogle Scholar
  52. Fan F, Hamada MS, Li N, Li GQ, Luo CX (2017) Multiple fungicide resistance in Botrytis cinerea from greenhouse strawberries in Hubei Province, China. Plant Dis 101(4):601–606.  https://doi.org/10.1094/PDIS-09-16-1227-RECrossRefPubMedPubMedCentralGoogle Scholar
  53. Fang X, Phillips D, Verheyen G, Li H, Sivasithamparam K, Barbetti MJ (2012) Yields and resistance of strawberry cultivars to crown and root diseases in the field, and cultivar responses to pathogens under controlled environment conditions. Phytopathol Mediterr 51(1):69–84Google Scholar
  54. Fennimore SA, Martin FN, Miller TC, Broome JC, Dorn N, Greene I (2014) Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortSci 49(12):1542–1549CrossRefGoogle Scholar
  55. Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Rev Food Sci Nutr 18(2):123–201Google Scholar
  56. Ferrer RMG, Scheerens JC, Erb WA (1993) In vitro screening of 76 strawberry cultivars for twospotted spider mite resistance. HortSci 28(8):841–844CrossRefGoogle Scholar
  57. Forge T, Hashimoto N, Neilsen D, Kenney E, Zebarth B (2015) The use of compost as a preplant amendment to minimize impacts of parasitic nematodes and improve soil health and early establishment of red raspberry. Acta Hortic 1076:225–231.  https://doi.org/10.17660/ActaHortic.2015.1076.26CrossRefGoogle Scholar
  58. Gao Y, Lei Z, Reitz SR (2012) Western flower thrips resistance to insecticides:detection, mechanisms and management strategies. Pest Manag Sci 68(8):1111–1121.  https://doi.org/10.1002/ps.3305CrossRefPubMedGoogle Scholar
  59. Garcia E (2017) Effects of nitrogen fertilizer on Tetranychus urticae populations in strawberry. Doctoral dissertation, California State Polytechnic University, PomonaGoogle Scholar
  60. Gillespie DR, Opit G, Roitber B (2000) Effects of temperature and relative humidity on development, reproduction, and predation in Feltiella acarisuga (Vallot) (Diptera: Cecidomyiidae). Biol Control 17(2):132–138.  https://doi.org/10.1006/bcon.1999.0782CrossRefGoogle Scholar
  61. Godfrey LD (2011) Spider mites. Pest notes. University of California Statewide Integrated Pest Management Program. UC ANR Publication, Oakland, p 7408Google Scholar
  62. Gorman K, Hewitt F, Denholm I, Devine GJ (2001) New developments in insecticide resistance in the glasshouse whitefly (Trialeurodes vaporariorum) and the two-spotted spider mite (Tetranychus urticae) in the UK. Pest Manag Sci 58(2):123–130.  https://doi.org/10.1002/ps.427CrossRefGoogle Scholar
  63. Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60(10):2827–2838.  https://doi.org/10.1093/jxb/erp080CrossRefPubMedGoogle Scholar
  64. Gross HR, Hamm JJ, Carpenter JE (1994) Design and application of a hive-mounted device that uses honey bees (Hymenoptera: Apidae) to disseminate Heliothis nuclear polyhedrosis virus. Environ Entomol 23(2):492–501CrossRefGoogle Scholar
  65. Gupton CL (1999) Breeding for rosette resistance in blackberry. Acta Hortic 505:313–318.  https://doi.org/10.17660/ActaHortic.1999.505.40CrossRefGoogle Scholar
  66. Hale FA, Hensley D (2010) Commercial sources of predators, parasitoids and pathogens. SP290-Z University of Tennessee Agricultural Extension Service. http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1032&context=utk_agexcomhort
  67. Hancock JF, Sjulin TM, Lobos GA (2008) Strawberries. In: Hancock JF (ed) Temperate fruit crop breeding. Springer, Dordrecht, pp 393–437CrossRefGoogle Scholar
  68. Heagle AS, Burns JC, Fisher DE, Miller JE (2002) Effects of carbon dioxide enrichment on leaf chemistry and reproduction by two-spotted spider mites (Acari:Tetranychidae) on white clover. Environ Entomol 31(4):594–601.  https://doi.org/10.1603/0046-225X-31.4.594CrossRefGoogle Scholar
  69. Heidenreich C (2006) Managing raspberry cane diseases. New York Berry News 5(2):16–18Google Scholar
  70. Herron GA, James TM (2005) Monitoring insecticide resistance in Australian Frankliniella occidentalis Pergande (Thysanoptera:Thripidae) detects fipronil and spinosad resistance. Aus J Entomol 44(3):299–303.  https://doi.org/10.1111/j.1440-6055.2005.00478.xCrossRefGoogle Scholar
  71. Holopainen JK, Heijari J, Nerg A-M, Vuorinen M, Kainulainen P (2009) Potential for the use of exogenous chemical elicitors in disease and insect pest management of conifer seedling production. Open For Sci J 2:17–24.  https://doi.org/10.2174/1874398600902010017CrossRefGoogle Scholar
  72. Huang R, Che HJ, Zhang J, Yang L, Jiang DH, Li GQ (2012) Evaluation of Sporidiobolus pararoseus strain YCXT3 as biocontrol agent of Botrytis cinerea on post-harvest strawberry fruits. Biol Control 62(1):53–63CrossRefGoogle Scholar
  73. Husaini AM, Xu YW (2016) Challenges of climate change to strawberry cultivation:uncertainty and beyond. In: Husaini AM, Neri D (eds) Strawberry: growth, development and diseases. CABI, Boston, pp 262–287CrossRefGoogle Scholar
  74. Ilias A, Vassiliou VA, Vontas J, Tsagkarakou A (2017) Molecular diagnostics for detecting pyrethroid and Abamectin resistance mutations in Tetranychus urticae. Pestic Biochem Physiol 135(1):9–14.  https://doi.org/10.1016/j.pestbp.2016.07.004CrossRefPubMedPubMedCentralGoogle Scholar
  75. Isman MB (2000) Plant essentialoils for pest and disease management. Crop Protec 19(8–10):603–608.  https://doi.org/10.1016/S0261-2194(00)00079-XCrossRefGoogle Scholar
  76. Israel S, Mawar R, Lodha S (2005) Soil solarization, amendments and bio-control agents for the control of Macrophomina phaseolina and Fusarium oxysporum f.sp. cumini in aridisols. Ann Appl Biol 146(4):481–491CrossRefGoogle Scholar
  77. Ivey MLL, Hollier CA, Hoy JW, Clark CA, Overstreet C, Sidhu J, Singh R, Price III T, Ferguson MH, Padgett GB, Groth D (2016) 2016 Louisiana plant disease management guide. https://www.lsu.edu/agriculture/plant/extension/hcpl-publications/Pub1802-plant_management_guide.pdf. Accessed 21 Nov 2017
  78. Janisiewicz WJ, Takeda F, Jurick II W, Nichols B, Wolford S, Glenn DM (2015) A novel approach to control gray mold, anthracnose, and powdery mildew on strawberry using low-dose UV-C irradiation. In: Abstracts of the American Phytopathological Society Annual Meeting, Pasadina, CA, 1–5 August 2015Google Scholar
  79. Jarvis WR (1962) The infection of strawberry and raspberry fruits by Botrytis cinerea Fr. Ann Appl Biol 50(3):569–575.  https://doi.org/10.1111/j.1744-7348.1962.tb06049.xCrossRefGoogle Scholar
  80. Jyoti JL, Brewer GJ (1999) Honey bees (Hymenoptera: Apidae) as vectors of Bacillus thuringiensis for control of banded sunflower moth (Lepidoptera: Tortricidae). Environ Entomol 28(6):1172–1176CrossRefGoogle Scholar
  81. Kapantaidaki DE, Sadikoglou E, Tsakireli D, Kampanis V, Stavrakaki M, Schorn C, Ilias A, Riga M, Tsiamis G, Nauen R, Skavdis G, Vontas J, Tsagkarakou A (2017) Insecticide resistance in Trialeurodes vaporariorum populations and novel diagnostics for kdr mutations. Pest Manag Sci.  https://doi.org/10.1002/ps.4674PubMedCrossRefPubMedCentralGoogle Scholar
  82. Karise R, Dreyersdorff G, Jahani M, Veromann E, Runno-Paurson E, Kaart T, Smagghe G, Mänd M (2016) Reliability of the entomovector technology using Prestop-Mix and Bombus terrestris L. as a fungal disease biocontrol method in open field. Sci Rep 6:31650.  https://doi.org/10.1038/srep31650CrossRefPubMedPubMedCentralGoogle Scholar
  83. Keep E, Knight RL (1967) A new gene from Rubus occidentalis L. for resistance to strains 1, 2 and 3 of the Rubus aphid Amphorophora rubi Kalt. Euphytica 16(2):209–214CrossRefGoogle Scholar
  84. Kidd JP, Clark JR, Fenn P, Smith BJ (2003) Evaluation of post-harvest disease resistance in blackberry cultivars. AAEs Res Ser Hortic Stud 520:18–19Google Scholar
  85. Koike SA, Gordon TR (2015) Management of Fusarium wilt of strawberry. Crop Protect 73(1):67–72CrossRefGoogle Scholar
  86. Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4(1):63–84Google Scholar
  87. Kovach J, Petzoldt R, Harman GE (2000) Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to strawberries for Botrytis control. Biol Control 18(3):235–242CrossRefGoogle Scholar
  88. Kurze S, Bahl H, Dahl R, Berg G (2001) Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis 85(5):529–534.  https://doi.org/10.1094/PDIS.2001.85.5.529CrossRefPubMedPubMedCentralGoogle Scholar
  89. Landi L, Feliziani E, Romanazzi G (2014) Expression of defense genes in strawberry fruits treated with different resistance inducers. J Agric Food Chem 62(14):3047–3056.  https://doi.org/10.1021/jf404423xCrossRefPubMedPubMedCentralGoogle Scholar
  90. Leach H, Grieshop MJ, Isaacs R (2016) Integrated strategies for management of spotted wing drosophila in organic small fruit production. Michigan State University Fact Sheet http://www.ipm.msu.edu/uploads/files/SWD/MSU_Organic_SWD_factsheet.pdf. Accessed 6 Nov 2017
  91. Leach H, Wise JC, Isaacs R (2017) Reduced ultraviolet light transmission increases insecticide longevity in protected culture raspberry production. Chemosphere 189:454–465.  https://doi.org/10.1016/j.chemosphere.2017.09.086CrossRefPubMedPubMedCentralGoogle Scholar
  92. Lewis JA, Lumsden RD (2001) Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Protect 20(1):49–56.  https://doi.org/10.1016/S0261-2194(00)00052-1CrossRefGoogle Scholar
  93. Lodha S, Sharma SK, Aggarwal RK (1997) Solarization and natural heating of irrigated soil amended with cruciferous residues for improved control of Macrophomina phaseolina. Plant Pathol 46(2):186–190CrossRefGoogle Scholar
  94. Lopez DC, Zhu-Salzman K, Ek-Ramos MJ, Sword GA (2014) The entomopathogenic fungal endophytes Purpureocillium lilacinum (Formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS One 9(8):e103891.  https://doi.org/10.1371/journal.pone.0103891CrossRefGoogle Scholar
  95. Lozano-Tovar MD, Ortiz-Urquiza A, Garrido-Jurado I, Trapero-Casas A, Quesada-Moraga E (2013) Assessment of entomopathogenic fungi and their extracts against a soil-dwelling pest and soil-borne pathogens of olive. Biol Control 67(3):409–420.  https://doi.org/10.1016/j.biocontrol.2013.09.006CrossRefGoogle Scholar
  96. MacKenzie SJ, Peres NA (2012) Use of leaf wetness and temperature to time fungicide applications to control botrytis fruit rot of strawberry in Florida. Plant Dis 96(4):529–536.  https://doi.org/10.1094/PDIS-03-11-0182CrossRefPubMedPubMedCentralGoogle Scholar
  97. Mansour SA, Belal MH, Abou-Arab AA, Gad MF (2009) Monitoring of pesticides and heavy metals in cucumber fruits produced from different farming systems. Chemosphere 75(5):601–609.  https://doi.org/10.1016/j.chemosphere.2009.01.058CrossRefPubMedPubMedCentralGoogle Scholar
  98. Martin P, Johnson SN (2010) Evidence that elevated CO2 reduces resistance to the European large raspberry aphid in some raspberry cultivars. J Appl Entomol 135(3):237–240.  https://doi.org/10.1111/j.1439-0418.2010.01544.xCrossRefGoogle Scholar
  99. Mass JL (1998) Compendium of strawberry diseases. American Phytopathological Society, St PaulCrossRefGoogle Scholar
  100. Mattner SW, Porter IJ, Gounder RK, Shanks AL, Wren DJ, Allen D (2008) Factors that impact on the ability of biofumigants to suppress fungal pathogens and weeds of strawberry. Crop Protect 27(8):1165–1173CrossRefGoogle Scholar
  101. Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Ann Rev Plant Biol 68:485–512.  https://doi.org/10.1146/annurev-arplant-042916-041132CrossRefGoogle Scholar
  102. Mears DR, Both AJ (2002) A positive pressure ventilation system with insect screening for tropical and subtropical greenhouse facilities. Acta Hortic 578:125–132.  https://doi.org/10.17660/ActaHortic.2002.578.14CrossRefGoogle Scholar
  103. Medina-Mínguez JJ (2002) Soil solarization and biofumigation in strawberries in Spain. In: Batchelor TA, Bolivar JM (eds) Proceedings of the international conference on alternatives to methyl bromide – the remaining challenges, Sevilla, Spain March, 2002. European Commission, Brussels, pp 123–125Google Scholar
  104. Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 31(1):1–8.  https://doi.org/10.1016/j.postharvbio.2003.08.004CrossRefGoogle Scholar
  105. Meyer MM, Kirkpatrick BC (2011) Exogenous applications of abscisic acid increase curing of Pierce’s disease-affected grapevines growing in pots. Plant Dis 95(2):173–177.  https://doi.org/10.1094/PDIS-06-10-0446CrossRefPubMedPubMedCentralGoogle Scholar
  106. Miles TD, Day B, Schilder AC (2011) Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by Colletotrichum acutatum. Mol Plant Pathol 12(5):463–477.  https://doi.org/10.1111/j.1364-3703.2010.00687.xCrossRefPubMedPubMedCentralGoogle Scholar
  107. Miresmailli S, Isman MB (2006) Efficacy and persistence of rosemary oil as an acaricide against twospotted spider mite (Acari: Tetranychidae) on greenhouse tomato. J Econ Entomol 99(6):2015–2023.  https://doi.org/10.1603/0022-0493-99.6.2015CrossRefPubMedPubMedCentralGoogle Scholar
  108. Olaya G, Abawi GS (1996) Effect of water potential on mycelial growth and on production and germination of sclerotia of Macrophomina phaseolina. Plant Dis 80(12):1347–1350CrossRefGoogle Scholar
  109. Ouellette S, Coyette M-H, Labbé C, Laur J, Gaudreau L, Gosselin A, Dorais M, Deshmuksh RK, Bélanger RR (2017) Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.00949
  110. Palmer S, Scott E, Stangoulis J, Able AJ (2006) The effect of foliar-applied Ca and Si on the severity of powdery mildew in two strawberry cultivars. Acta Hortic 708:135–140.  https://doi.org/10.17660/ActaHortic.2006.708.21CrossRefGoogle Scholar
  111. Particka CA, Hancock JF (2005) Field evaluation of strawberry genotypes for tolerance to black root rot on fumigated and nonfumigated soil. J Am Soc Hort Sci 130(5):688–693CrossRefGoogle Scholar
  112. Peng G, Sutton JC, Kevan PG (1992) Effectiveness of heoney bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Can J Plant Pathol 14(2):117–129CrossRefGoogle Scholar
  113. Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375.  https://doi.org/10.1146/annurev-phyto-082712-102340CrossRefPubMedPubMedCentralGoogle Scholar
  114. Polashock JJ, Kramer M (2006) Resistance of blueberry cultivars to botryosphaeria stem blight and phomopsis twig blight. HortSci 41(6):1457–1461CrossRefGoogle Scholar
  115. Polashock JJ, Ehlenfeldt MK, Stretch AW, Kramer M (2005) Anthracnose fruit rot resistance in blueberry cultivars. Plant Dis 89(1):33–38PubMedCrossRefGoogle Scholar
  116. Pratt RG (2006) A direct observation technique for evaluating sclerotium germination by Macrophomina phaseolina, and effects of biocontrol materials on survival of sclerotia in soil. Mycopathologia 162(2):121–131PubMedCrossRefPubMedCentralGoogle Scholar
  117. Raposo R, Delcan J, Gomez V, Melgarejo P (1996) Distribution and fitness of isolates of Botrytis cinerea with multiple fungicide resistance in Spanish greenhouses. Plant Pathol 45(3):497–505.  https://doi.org/10.1046/j.1365-3059.1995.d01-140.xCrossRefGoogle Scholar
  118. Rasiukevièiûtë N, Valiuðkaitë A, Survilienë-Radzevièë E, Supronienë S (2013) Investigation of Botrytis cinerea risk forecasting model of strawberry in Lithuania. Proc Latv Acad Sci 67(2):195–198.  https://doi.org/10.2478/prolas-2013-0032CrossRefGoogle Scholar
  119. Reddy MVB, Belkacemi K, Corcuff R, Castaigne F, Arul J (2000) Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biol Technol 20(1):39–51.  https://doi.org/10.1016/S0925-5214(00)00108-3CrossRefGoogle Scholar
  120. Reeh KW, Hillier NK, Cutler GC (2014) Potential of bumble bees as bio-vectors of Clonostachys rosea for Botrytis bligh management in lowbush blueberry. J Pest Sci 87(3):543–550CrossRefGoogle Scholar
  121. Romanazzi G, Gabler FM, Smilanick JL (2006) Preharvest chitosan and postharvest UV irradiation treatments suppress gray mold of table grapes. Plant Dis 90(4):445–450.  https://doi.org/10.1094/PD-90-0445CrossRefPubMedPubMedCentralGoogle Scholar
  122. Ruckert A (2017) Interactions between water-stress and neonicotinoid insecticides on spider mite infestations in corn. Doctoral dissertation, Utah State UniversityGoogle Scholar
  123. Safi JM, Abou-Foul NS, El-Nahhal YZ, El-Sebae AH (2002) Monitoring of pesticide residues on cucumber, tomatoes and strawberries in Gaza Governorates, Palestine. Nahrung/Food 46(1):34–39PubMedCrossRefPubMedCentralGoogle Scholar
  124. Samtani JB, Gilbert C, Weber JB, Subbarao KV, Goodhue RE, Fennimore SA (2012) Effect of steam and solarization treatments on pest control, strawberry yield, and economic returns relative to methyl bromide fumigation. HortSci 47(1):64–70CrossRefGoogle Scholar
  125. Scherm H, Krewer G (2008) Disease management in organic rabbiteye blueberries. Int J Fruit Sci 8(1–2):69–80.  https://doi.org/10.1080/15538360802367661CrossRefGoogle Scholar
  126. Scherm H, Stanaland RD (2001) Evaluation of fungicide timing strategies for control of mummy berry disease of rabbiteye blueberry in Georgia. Small Fruits Rev 1(3):69–81CrossRefGoogle Scholar
  127. Scherm H, Ngugi HK, Savelle AT, Edwards JR (2004) Biological control of infection of blueberry flowers caused by Monilinia vaccinia-corymbosi. Biol Control 29(2):199–206.  https://doi.org/10.1016/S1049-9644(03)00154-3CrossRefGoogle Scholar
  128. Schilder A, Wharton P, Miles T (2008) Mummy berry. Michigan State University Extension Bulletin E-2846. http://blogs.oregonstate.edu/mummyberry/files/2014/05/MUMMY-BERRY-FACT-SHEET.pdf
  129. Schuch UK, Rdak RA, Bethke JA (1998) Cultivar, fertilizer and irrigation affect vegetative growth and susceptibility of chrysanthemum to western flower thrips. J Am Soc Hortic Sci 123(4):727–733CrossRefGoogle Scholar
  130. Shennan C, Muramoto J, Koike S, Baird G, Fennimore S, Samtani J, Bolda M, Dara S, Daugovish O, Lazarovits G, Butler D, Rosskopf E, Kokalis-Burelle N, Klonsky K, Mazzola M (2017) Anaerobic soil disinfestation is an alternative to soil fumigation for control of some soilborne pathogens in strawberry production. Plant Pathol.  https://doi.org/10.1111/ppa.12721CrossRefGoogle Scholar
  131. Shipp JL, Zhang Y, Hunt DWA, Ferguson G (2003) Influence of humidity and greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) for control of greenhouse arthropod pests. Environ Entomol 32(5):1154–1163.  https://doi.org/10.1603/0046-225X-32.5.1154CrossRefGoogle Scholar
  132. Shipp JL, Kapongo JP, Park H-H, Kevan P (2012) Effect of bee-vectored Beauveria bassiana on greenhouse beneficials under greenhouse cage conditions. Biol Control 63(2):135–142.  https://doi.org/10.1016/j.biocontrol.2012.07.008CrossRefGoogle Scholar
  133. Short GW, Wyllie TD, Bristow PR (1980) Survival of Macrophomina phaseolina in soil and in residue of soybean. Phytopathology 70(1):13–17CrossRefGoogle Scholar
  134. Simmonds MSJ, Manlove JD, Blaney WM, Khambay BPS (2002) Effects of selected botanical insecticides on the behaviour and mortality of the glasshouse whitefly Trialeurodes vaporariorum and the parasitoid Encarsia formosa. Entomol Exp Appl 102(1):29–47CrossRefGoogle Scholar
  135. Sjulin TM, Dale A (1987) Genetic diversity of North American strawberry cultivars. J Am Soc Hortic Sci 112(2):375–385Google Scholar
  136. Smith T (2015) Biological control: greenhouse pests and their natural enemies. UMass Extension publication. https://ag.umass.edu/print/9311
  137. Soylu EM, Kurt Ş, Soylu S (2010) In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int J Food Microbiol 143(3):183–189.  https://doi.org/10.1016/j.ijfoodmicro.2010.08.015CrossRefPubMedGoogle Scholar
  138. Stapleton JJ (2000) Soil solarization in various agricultural production systems. Crop Prot 19(8–12):837–841CrossRefGoogle Scholar
  139. Steiner MY, Spohr L, Goodwin S (2011) Relative humidity controls pupation success and dropping behavior of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae). Austral Entomol 50(2):179–186.  https://doi.org/10.1111/j.1440-6055.2010.00798.xCrossRefGoogle Scholar
  140. Stensvand A (2000) Investigation on fungicide residues in greenhouse-grown strawberries. J Agric Food Chem 48(3):917–920.  https://doi.org/10.1021/jf990418kCrossRefPubMedGoogle Scholar
  141. Stević M, Pavlović B, Tanović B (2017) Efficacy of fungicides with different modes of action in raspberry spur blight (Didymella applanata) control. Pestic Fitomedicina 32(1):25–32CrossRefGoogle Scholar
  142. Sutton JC, Peng G (1993) Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83(6):615–621CrossRefGoogle Scholar
  143. Tanaka S, Kobayashi T, Iwasaki K, Yamane S, Maeda K, Sakurai K (2003) Properties and metabolic diversity of microbial communities in soils treated with steam sterilization compared with methyl bromide and chloropicrin fumigations. Soil Sci Plant Nutr 49(4):603–610CrossRefGoogle Scholar
  144. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insects Biochem Mol Biol 40(8):563–572.  https://doi.org/10.1016/j.ibmb.2010.05.008CrossRefGoogle Scholar
  145. Van Lenteren JC (2000) Success in biological control of arthropods by augmentation of natural enemies. In: Gurr G, Wratten S (eds) Biological control: measures of success. Springer, Dordrecht, pp 77–103CrossRefGoogle Scholar
  146. Van Lenteren JC, Woets J (1988) Biological and integrated pest control in greenhouses. Annu Rev Entomol 33:239–269CrossRefGoogle Scholar
  147. Van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2017) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioCon.  https://doi.org/10.1007/s10526-017-9801-4CrossRefGoogle Scholar
  148. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483.  https://doi.org/10.1146/annurev.phyto.36.1.453CrossRefPubMedPubMedCentralGoogle Scholar
  149. Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11(4):443–448.  https://doi.org/10.1016/j.pbi.2008.05.005CrossRefPubMedGoogle Scholar
  150. Verma N, MacDonald L, Punja ZK (2006) Inoculum prevalence, host infection and biological control of Colletrotrichum acutatum: causal agent of blueberry anthracnose in British Columbia. Plant Pathol 55(3):442–450CrossRefGoogle Scholar
  151. Vivancos J, Labbé C, Menzies JG, Bélanger RR (2015) Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol Plant Pathol 16(6):572–582.  https://doi.org/10.1111/mpp.12213CrossRefPubMedGoogle Scholar
  152. Wang S, Galletta G (1998) Foliar application of potassium silicate induces metabolic changes in strawberry plants. J Plant Nutr 21(1):157–167.  https://doi.org/10.1080/01904169809365390CrossRefGoogle Scholar
  153. Williamson B, Tudzynski B, TUdzynski P, Van Kan JAL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8(5):561–580.  https://doi.org/10.1111/J.1364-3703.2007.00417.XCrossRefPubMedGoogle Scholar
  154. Wraight SP, Lopes RB, Faria M (2017) Microbial control of mite and insect pests of greenhouse crops. In: Lacey LA (ed) Microbial control of insect and mite pests: from theory to practice. Academic, New York, pp 237–252CrossRefGoogle Scholar
  155. Yourman LF, Jeffers SN (1999) Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant Dis 83(6):569–575.  https://doi.org/10.1094/PDIS.1999.83.6.569CrossRefPubMedGoogle Scholar
  156. Yun H-G, Kim D-J, Gwak W-S, Shin T-Y, Woo S-D (2017) Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea. Mycobiology 45(3):192–198.  https://doi.org/10.5941/MYCO.2017.45.3.192CrossRefPubMedPubMedCentralGoogle Scholar
  157. Zalom FG, Bolda MP, Dara SK, Joseph S (2016) Insects and mites: UC IPM pest management guidelines: strawberry, University of California Statewide Integrated Pest Management Program. UC ANR Publication, Oakland, p 3468Google Scholar
  158. Zavala JA, Casteel CL, DeLuicia EH, Berenbaum MR (2008) Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc Natl Acad Sci U S A 105(13):5129–5133.  https://doi.org/10.1073/pnas.0800568105CrossRefPubMedPubMedCentralGoogle Scholar
  159. Zhang H, Yang Q, Lin H, Ren X, Zhao L, Hou J (2013) Phytic acid enhances biocontrol efficacy of Rhodotorula mucilaginosa against postharvest gray mold spoilage and natural spoilage of strawberries. LWT – Food Sci Technol 52(2):110–115CrossRefGoogle Scholar
  160. Ziska LH, Runion GB (2007) Future weed, pest, and disease problems for plants. In: Newton P, Carran RA, Edwards GR, Niklaus PA (eds) Agroecosystems in a changing climate. Taylor & Francis, Boca Raton, pp 261–287Google Scholar
  161. Zveibil A, Mor N, Gnayem N, Freeman S (2012) Survival, host-pathogen interaction, and management of Macrophomina phaseolina on strawberry in Israel. Plant Dis 96(2):265–272PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of California Cooperative ExtensionSan Luis ObispoUSA

Personalised recommendations