Skip to main content

Vibrational Behavior in Bark Beetles: Applied Aspects

  • Chapter
  • First Online:
Biotremology: Studying Vibrational Behavior

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 6))

Abstract

Acoustic signals are used for intraspecific communication in bark beetles and a variety of stridulatory mechanisms have evolved within the subfamily Scolytinae (Coleoptera: Curculionidae). Bark beetles use stridulatory signals for communication at the tree surface and within tunnels inside tree tissues. Bark beetles produce a variety of call types that are broadband with frequencies ranging from 1 to 80 kHz. Not only are airborne and substrate-borne vibrations available, but every stridulation event produces both airborne and substrate-borne vibrations via the same action of the animal. Vibrations appear to be used during species recognition, premating interactions, pair formation, mate selection, intraspecies aggression, territoriality, and predator deterrence. No sound receptors have been located for bark beetles; however, we propose potential locations in this chapter. We provide an overview of acoustic communication and its use by adult bark beetles, describe their stridulatory structures, interpret how vibrations move within tree materials and how this affects the beetles’ ecology and behavior, and present technical and applied applications of acoustic tools for bark beetle management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aflitto NC, Hofstetter RW (2014) Use of acoustics to deter bark beetles from entering tree material. Pest Manag Sci 70(12):1808–1814

    CAS  PubMed  Google Scholar 

  • Aflitto NC, Hofstetter RW, McGuire R, Dunn DD, Potter KA (2014) Technique for studying arthropod and microbial communities within tree tissues. J Vis Exp 93:e50793

    Google Scholar 

  • Barr BA (1969) Sound production in Scolytindae (Coleoptera) with emphasis on the genus Ips. Can Entomol 101(6):636–672

    Google Scholar 

  • Bendele H (1986) Mechanosensory cues control chasing behaviour of whirligig beetles (Coleoptera, Gyrinidae). J Comp Physiol A 158(3):405–411

    Google Scholar 

  • Bentz BJ, Regniere J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negron JF, Seybold SJ (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60(8):602–613

    Google Scholar 

  • Birch MC (1984) Aggregation in bark beetles. In: Bell WJ, Cardé RT (eds) Chemical ecology of insects. Springer, Boston, MA, pp 331–353

    Google Scholar 

  • Borden JH (1989) Semiochemicals and bark beetle populations: exploitation of natural phenomena by pest management strategists. Ecography 12(4):501–510

    Google Scholar 

  • Bridges JR, Nettleton WA, Connor MD (1985) Southern pine beetle (Coleoptera: Scolytidae) infestations without the bluestain fungus, Ceratocystis minor. J Econ Entomol 78(2):325–327

    Google Scholar 

  • Byers JA (1989) Chemical ecology of bark beetles. Cell Mol Life Sci 45:271–283

    CAS  Google Scholar 

  • Byers JA (2007) Simulation of mating disruption and mass trapping with competitive attraction and camouflage. Environ Entomol 36(6):1328–1338

    PubMed  Google Scholar 

  • Byers J, Hebets E, Podos J (2010) Female mate choice based upon male motor performance. Anim Behav 79(4):771–778

    Google Scholar 

  • Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) (2014) Studying vibrational communication. Springer, Berlin

    Google Scholar 

  • Čokl A, Prešern J, Virant-Doberlet M, Bagwell GJ, Millar JG (2004) Vibratory signals of the harlequin bug and their transmission through plants. Physiol Entomol 29:372–380

    Google Scholar 

  • Davis TS, Hofstetter RW (2009) Effects of gallery density and species ration on the fitness of fecundity of two sympatric bark beetles (Coleoptera: Curculionidae). Environ Entomol 38(3):639–650

    CAS  PubMed  Google Scholar 

  • Dobai A, Sivalinghem S, Guedes RN, Yack JE (2018) Acoustic communication in the pine engraver bark beetle: do signals vary between behavioural contexts? Physiol Entomol 43:30–41

    Google Scholar 

  • Drosopoulos S, Claridge MF (2006) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Press LLC, Boca Raton, FL

    Google Scholar 

  • Eidmann HH (1992) Impact of bark beetles on forests and forestry in Sweden. J Appl Entomol 114(1-5):193–200

    Google Scholar 

  • Fleming AJ, Lindeman AA, Carroll AL, Yack JE (2013) Acoustics of the mountain pine beetle (Dendroctonus ponderosae) (Curculionidae, Scolytinae): sonic, ultrasonic, and vibration characteristics. Can J Zool 91(4):235–244

    Google Scholar 

  • Forrest T, Read M, Farris H, Hoy R (1997) A tympanal hearing organ in Scarab beetles. J Exp Biol 200(3):601–606

    CAS  PubMed  Google Scholar 

  • Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167(2):353–376

    CAS  PubMed  Google Scholar 

  • Frazier JL, Nebeker TE, Mizell RF, Calvert WH (1981) Predatory behavior of the clerid beetle Thanasimus dubius (Coleoptera: Cleridae) on the southern pine beetle (Coleoptera: Scolytidae). Can Entomol 113:35–43

    Google Scholar 

  • Haack RA, Blank RW, Fink FT, Mattson WJ (1988) Ultrasonic acoustical emissions from sapwood of eastern white pine, northern red oak, red maple, and paper birch: implications for bark-and wood-feeding insects. Fla Entomol 71(4):427–440

    Google Scholar 

  • Hebets EA, Elias DO, Mason AC, Miller GL, Stratton GE (2008) Substrate dependent signalling success in the wolf spider, Schizocosa retrorsa. Anim Behav 75:605–615

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hofstetter RW, McGuire R, Dunn DD (2010) Use of acoustics to disrupt and deter wood-infesting insects and other invertebrates from and within trees and wood products. US Patent 2011/63838 (2010); WIPO Patent Application WO/2012/078814 (2012)

    Google Scholar 

  • Hofstetter RW, Dunn DD, McGuire R, Potter KA (2013) Using acoustic technology to reduce bark beetle reproduction. Pest Manag Sci 70(1):24–27

    PubMed  Google Scholar 

  • Hulcr J, Atkinson TH, Cognato AI, Jordal BH, McKenna DD (2015) Morphology, taxonomy, and phylogenetics of bark beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles: biology and ecology of native and invasive species. Academic Press, San Diego, pp 41–84

    Google Scholar 

  • Kaiser M (2014) Acoustics of Mountain Pine Beetle and Lodgepole Pine. PhD thesis, University of Calgary, Graduate Program in Biological Sciences, Calgary, Alberta, Canada

    Google Scholar 

  • Kerchev IA (2015) Description of the stridulatory apparatus of the Far Eastern bark beetles Polygraphus proximus Blandford, 1894 and P. jezoensis Niisima, 1909 (Coleoptera, Curculionidae: Scolytinae). Entomol Rev 95(9):1191–1196

    Google Scholar 

  • Kirkendall LR (1983) The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zool J Linn Soc Lond 77:293–352

    Google Scholar 

  • Kolmes SA (1983) Ecological and sensory aspects of prey capture by the whirligig beetle Dineutes discolor (Coleoptera: Gyrinidae). J NY Entomol Soc 91(4):405–412

    Google Scholar 

  • Lewis EE, Cane JH (1990) Stridulation as a primary antipredator defence of a beetle. Anim Behav 40:1003–1004

    Google Scholar 

  • Lindeman AA (2016) Acoustic signalling in the destructive bark beetle genus Dendroctonus (Curculionidae: Scolytinae) with emphasis on Dendroctonus valens. PhD thesis, Carleton University, Department of Biology, Ottawa, Canada

    Google Scholar 

  • Lindeman AA, Yack JE (2015) What is the password? Female bark beetles (Scolytinae) grant males access to their galleries based on courtship song. Behav Process 115:123–131

    Google Scholar 

  • Liu Z, Xin Y, Xu B, Raffa KF, Sun J (2017) Sound-triggered production of antiaggregation pheromone limits overcrowding of Dendroctonus valens attacking pine trees. Chem Senses 42(1):59–67

    CAS  PubMed  Google Scholar 

  • Lyal CHC, King T (1996) Elytro-tergal stridulation in weevils (Insecta: Coleoptera: Curculionoidea). J Nat Hist 30(5):703–773

    Google Scholar 

  • Mankin RW, Moore A (2010) Acoustic detection of Oryctes rhinoceros (Coleoptera: Scarabaeidae: Dynastinae) and Nasutitermes luzonicus (Isoptera: Termitidae) in palm trees in urban Guam. J Econ Entomol 103:1135–1143

    CAS  PubMed  Google Scholar 

  • Mankin RW, Hagstrum DW, Smith MT, Roda AL, Kairo MTK (2011) Perspective and promise: a century of insect acoustic detection and monitoring. Am Entomol 57:30–44

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 332–353

    Google Scholar 

  • Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37(2):110–118

    Google Scholar 

  • Michael R, Rudinsky J (1972) Sound production in Scolytidae: specificity in male Dendroctonus beetles. J Insect Physiol 18(11):2189–2201

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Google Scholar 

  • Oester PT, Ryker LC, Rudinsky JA (1978) Complex male premating stridulation of the bark beetle Hylurgops rugipennis (Mann.). Coleop Bull 32(2):93–98

    Google Scholar 

  • Pena J, Grace J (1986) Water relations and ultrasound emissions of Pinus sylvestris L. before, during and after a period of water stress. New Phytol 103(3):515–524

    Google Scholar 

  • Pitman GB, Vité JP (1974) Biosynthesis of methylcyclohexenone by male Douglas-fir beetle. Environ Entomol 3(5):886–887

    CAS  Google Scholar 

  • Pureswaran DS, Hofstetter RW, Sullivan BT, Potter KA (2016) The role of multimodal signals in species recognition between tree-killing bark beetles in a narrow sympatric zone. Environ Entomol 45(3):582–591

    PubMed  Google Scholar 

  • Raffa KF, Phillips TW, Salom SM (1993) Strategies and mechanisms of host colonization by bark beetles. In: Schowalter TD, Filip GM (eds) Beetle-pathogen interactions in conifer forests. Academic Press, London, pp 102–128

    Google Scholar 

  • Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58(6):501–517

    Google Scholar 

  • Raffa KF, Gregoire G-C, Lindgren BS (2015) Natural history and ecology of bark beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles: biology and ecology of native and invasive species. Academic Press, San Diego, pp 1–28

    Google Scholar 

  • Ramp WK (1965) The auditory range of a Hairy woodpecker. Condor 67(2):183–185

    Google Scholar 

  • Rosado-Neto GH, Santos GBD (2010) The elytro-tergal stridulatory apparatus of the genus Bondarius Rosado-Neto (Coleoptera, Curculionidae). Rev Bras Entomol 54(2):337–338

    Google Scholar 

  • Rudinsky JA (1969) Masking of the aggregation pheromone in Dendroctonus pseudotsugae Hopk. Science 166(3907):884–885

    CAS  PubMed  Google Scholar 

  • Rudinsky JA, Michael RR (1972) Sound production in Scolytidae: chemostimulus of sonic signal by the Douglas-fir beetle. Science 175(4028):1386–1390

    CAS  PubMed  Google Scholar 

  • Rudinsky JA, Michael RR (1973) Sound production in Scolytidae: stridulation by female Dendroctonus beetles. J Insect Physiol 19(3):689–705

    Google Scholar 

  • Rudinsky JA, Michael RR (1974) Sound production in Scolytidae: ‘Rivalry’ behaviour of male Dendroctonus beetles. J Insect Physiol 20(7):1219–1230

    CAS  PubMed  Google Scholar 

  • Rudinsky JA, Ryker LC (1976) Sound production in Scolytidae: rivalry and premating stridulation of male Douglas-fir beetle. J Insect Physiol 22(7):997–999, 1001–1003

    CAS  Google Scholar 

  • Rudinsky JA, Morgan M, Libbey LM, Michael RR (1973) Sound production in Scolytidae: 3-methyl-2-cyclohexen-l-one released by the female Douglas fir beetle in response to male sonic signal. Environ Entomol 2(4):505–510

    CAS  Google Scholar 

  • Rudinsky JA, Ryker LC, Michael RR, Libbey LM, Morgan ME (1976) Sound production in Scolytidae: female sonic stimulus of male pheromone release in two Dendroctonus beetles. J Insect Physiol 22:1675–1681

    Google Scholar 

  • Rudinsky JA, Oester PT, Ryker LC (1978) Gallery initiation and male stridulation of polygamous Spruce bark beetle Polygraphus rufipennis. Ann Entomol Soc Am 71(3):317–321

    Google Scholar 

  • Ryker LC (1984) Acoustic and chemical signals in the life cycle of a beetle. Sci Am 250(6):112–123

    CAS  Google Scholar 

  • Ryker LC (1988) Acoustic studies of Dendroctonus bark beetles. Fla Entomol 71(4):447–461

    Google Scholar 

  • Ryker LC, Rudinsky JA (1976a) Sound production in Scolytidae – acoustic signals of male and female Dendroctonus valens Leconte. J Appl Entomol 80(2):113–118

    Google Scholar 

  • Ryker LC, Rudinsky JA (1976b) Sound production in Scolytidae – aggressive and mating behaviour of mountain pine beetle. Ann Entomol Soc Am 69(4):677–680

    Google Scholar 

  • Ryker LC, Libbey LM, Rudinsky JA (1979) Comparison of volatile compounds and stridulation emitted by the Douglas-fir beetle from Idaho and Western Oregon populations. Environ Entomol 8(5):789–798

    CAS  Google Scholar 

  • Sapkota S (2017) Acoustic communication and behaviour of the Golden Haired Pine Bark Beetle, Hylurgus ligniperda (Coleoptera: Curculionidae). MS thesis, Massey University, Department of Zoology, Palmerston North, New Zealand

    Google Scholar 

  • Sasakawa M, Sasakawa T (1981) Stridulatory organs of the minute pine bark beetle Cryphalus fulvus Coleoptera Scolytidea and role of male sound in aggression behaviour. Kontyû 49(3):461–469

    Google Scholar 

  • Sasakawa M, Yoshiyasu Y (1983) Stridulatory organs of Japanese pine bark beetles Coleoptera Scolytidae. Kontyû 51(4):493–501

    Google Scholar 

  • Schenk JA, Benjamin DM (1969) Notes on the biology of Ips pini in central Wisconsin jack pine forests. Ann Entomol Soc Am 62(3):480–485

    Google Scholar 

  • Sivalinghem S (2011) Acoustic communication in the Pine Engraver Bark Beetle, Ips pini (Coleoptera: Scolytinae). MS thesis, Carleton University, Department of Biology, Ottawa, Canada

    Google Scholar 

  • Swaby JA, Rudinsky JA (1976) Acoustic and olfactory behaviour of Ips pini (say) (Coleoptera-Scolytidae) during host invasion and colonization. J Appl Entomol 81(4):421–432

    Google Scholar 

  • Tyree MT, Dixon MA (1983) Cavitation events in Thuja occidentalis L.? Plant Physiol 72(4):1094–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Biol 40(1):19–36

    Google Scholar 

  • Vega FE, Hofstetter RW (2015) Bark beetles: biology and ecology of native and invasive species. Academic Press, San Diego, CA

    Google Scholar 

  • Vernoff S, Rudinsky JA (1980) Sound production and pairing behaviour of Leperinus-californicus swaine and Leperisinus oregonus blackman (Coleoptera, Scolytidae) attacking oregon ash. J Appl Entomol 90(1):58–74

    Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Google Scholar 

  • Wegensteiner R, Wermelinger B, Herrmann M (2015) Natural enemies of bark beetles: predators, parasitoids, pathogens, and nematodes. In: Vega FE, Hofstetter RW (eds) Bark beetles: biology and ecology of native and invasive species. Academic Press, San Diego, CA, pp 247–304

    Google Scholar 

  • Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus – a review of recent research. Forest Ecol Manag 202(1):67–82

    Google Scholar 

  • Wessel A (2006) Stridulation in the Coleoptera – an overview. In: Drosopoulos S, Claridge MF (eds) Insect sound and communication. CRC Press, Boca Raton, FL, pp 397–404

    Google Scholar 

  • Wilkinson R (1962) Stridulating organs in three southeastern Ips bark beetles. Fla Entomol 45(1):43–44

    Google Scholar 

  • Wilkinson RC, McClelland WT, Murillo R, Ostmark EO (1967) Stridulation and behavior in two southeastern Ips bark beetles (Coleoptera: Scolytidae). Fla Entomol 50(3):185–195

    Google Scholar 

  • Wood SL (1982) The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. In: The Bark and Ambrosia Beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Nat Mem 6:1–1356

    Google Scholar 

  • Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Tech 63:315–337

    Google Scholar 

  • Yack J (2016) Vibrational signaling. In: Pollack GS, Mason AC, Popper AN, Fay RR (eds) Insect hearing. Springer, New York, pp 99–123

    Google Scholar 

  • Yager DD, Spangler HG (1995) Characterization of auditory afferents in the tiger beetle, Cincindela marutha Dow. J Comp Physiol 176:587–599

    CAS  Google Scholar 

  • Yandell KL (1984) Sound production of Dendroctonusponderosae Hopkins (Coleoptera, Scolytidae) – a comparison of populations from three host pines in Oregon. J Appl Entomol 97(2):180–187

    Google Scholar 

  • Yturralde KM (2013) The acoustic ecology of bark beetles and bed bugs. PhD thesis, Northern Arizona University, School of Forestry, Flagstaff AZ

    Google Scholar 

  • Yturralde KM, Hofstetter RW (2015) Characterization of stridulatory structures and sounds of the larger Mexican pine beetle, Dendroctonus approximatus (Coleoptera: Curculionidae: Scolytinae). Fla Entomol 98(2):516–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Hofstetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hofstetter, R.W., Aflitto, N., Bedoya, C.L., Yturralde, K., Dunn, D.D. (2019). Vibrational Behavior in Bark Beetles: Applied Aspects. In: Hill, P., Lakes-Harlan, R., Mazzoni, V., Narins, P., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Studying Vibrational Behavior . Animal Signals and Communication, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-22293-2_21

Download citation

Publish with us

Policies and ethics