Advertisement

Directionality in Insect Vibration Sensing: Behavioral Studies of Vibrational Orientation

  • Felix A. HagerEmail author
  • Wolfgang H. Kirchner
Chapter
Part of the Animal Signals and Communication book series (ANISIGCOM, volume 6)

Abstract

Insects need to orient to various environmental stimuli. Many behavioral studies suggest orientation based on vibrational cues and signals, but they rarely exclude other potential stimuli such as chemical, visual, or airborne sound signals. Here, we review the behavioral evidence for directional vibrational orientation in insects. First, we discuss the potential of vibrational cues and signals for orientation and briefly state the importance of the material properties of the substrate. We then review what is known about vibrotaxis in some particularly well-studied species. Our selection aims to show the different experimental approaches that have been used and, as far as known, which kind of taxis and which kind of vibrational cue are used by the insects to orientate. We show that a growing body of current behavioral studies reveal the remarkable ability of insects to orientate via vibrational cues and signals in various contexts.

References

  1. Abbott JC, Stewart KW (1993) Male search behavior of the stonefly, Pteronarcella badia (Hagen) (Plecoptera: Pteronarcyidae), in relation to drumming. J Insect Behav 6:467–481CrossRefGoogle Scholar
  2. Aicher B, Tautz J (1990) Vibrational communication in the fiddler crab, Uca pugilator. I. Signals transmission through the substratum. J Comp Physiol A 166:345–353CrossRefGoogle Scholar
  3. Barth FG, Geethabali (1982) Spider vibration receptors: threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol A 148:175–185CrossRefGoogle Scholar
  4. Bleckmann H (1985) Perception of water surface waves: how surface waves are used for prey identification, prey localization, and intraspecific communication. In: Autrum H, Ottoson D, Perl ER, Schmidt RF, Shimazu H, Willis WD (eds) Progress in sensory physiology, vol 5. Springer, Berlin, pp 147–166CrossRefGoogle Scholar
  5. Brownell PH (1977) Compressional and surface waves in sand used by desert scorpions to locate prey. Science 197:479–482CrossRefGoogle Scholar
  6. Brownell P, Farley RD (1979) Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J Comp Physiol A 131:31–38CrossRefGoogle Scholar
  7. Cocroft RB, Tieu TD, Hoy RR, Miles RN (2000) Directionality in the mechanical response to substrate vibration in a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J Comp Physiol A 186:695–705CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cocroft RB, Gogala M, Hill PSM, Wessel A (2014) Fostering research progress in a rapidly growing field. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 3–12Google Scholar
  9. Čokl A (1983) Functional properties of vibroreceptors in the legs of Nezara viridula (L.) (Heteroptera: Pentatomiae). J Comp Physiol A 150:261–269CrossRefGoogle Scholar
  10. Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50Google Scholar
  11. Čokl A, Otto C, Kalmring K (1985) The processing of directional vibratory signals in the ventral nerve cord of Locusta migratoria. J Comp Physiol A 156:45–52CrossRefGoogle Scholar
  12. Čokl A, Virant-Doberlet M, McDowell A (1999) Vibrational directionality in the southern green stink bug Nezara viridula is mediated by female song. Anim Behav 58:1277–1283CrossRefGoogle Scholar
  13. Cremer L, Heckl M, Petersson BAT (2005) Structure-borne sound: structural vibrations and sound radiation at audio frequencies. Springer, BerlinCrossRefGoogle Scholar
  14. De Luca PA, Morris GK (1999) Courtship communication in meadow katydids: female preference for large male vibrations. Behaviour 135:777–794Google Scholar
  15. Devetak D (1985) Detection of substrate vibrations in the antlion larva, Myrmeleon formicarius (Neuroptera: Myrmeleonidae). Biol Vestn 33:11–22Google Scholar
  16. Devetak D (2014) Sand-borne vibrations in prey detection and orientation of antlions. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 319–332Google Scholar
  17. Devetak D, Arnett A (2015) Preference of antlion and wormlion larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for substrates according to substrate particle sizes. Eur J Entomol 112:500–509CrossRefGoogle Scholar
  18. Devetak D, Mencinger-Vračko B, Devetak M, Marhl M, Špernjak A (2007) Sand as a medium for transmission of vibratory signals of prey in antlions Euroleon nostras (Neuroptera: Myrmeleontidae). Physiol Entomol 32:268–277CrossRefGoogle Scholar
  19. Elias DO, Mason AC (2014) The role of wave and substrate heterogeneity in vibratory communication: practical issues in studying the effect of vibratory environments in communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 215–248Google Scholar
  20. Evans TA, Inta R, Lai JCS, Lenz M (2007) Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insect Soc 54:374–382CrossRefGoogle Scholar
  21. Fertin A, Casas J (2007) Orientation towards prey in antlions: efficient use of wave propagation in sand. J Exp Biol 210:3337–3343PubMedCrossRefGoogle Scholar
  22. Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. The University of Chicago Press, ChicagoGoogle Scholar
  23. Gibson JS, Cocroft RB (2018) Vibration-guided mate searching in treehoppers: directional accuracy and sampling strategies in a complex sensory environment. J Exp Biol 221:jeb175083PubMedCrossRefGoogle Scholar
  24. Hager FA, Kirchner WH (2013) Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J Exp Biol 216:3249–3256CrossRefGoogle Scholar
  25. Hager FA, Kirchner WH (2014) Directional vibration sensing in the termite Macrotermes natalensis. J Exp Biol 217:2526–2530PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hager FA, Glinka F, Kirchner WH (2016) Feel the women’s vibes: cues used for directional vibration sensing in Nezara viridula. In: Book of abstracts, 1st international symposium on biotremology, San Michele all’Adige, Italy, 5–7 July 2016. www.researchgate.net/publication/315753572_Biotremology_2016_Abstract_Book
  27. Hager FA, Kirchner L, Kirchner WH (2017) Directional vibration sensing in the leafcutter ant Atta sexdens. Biol Open 6:1949–1952PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hergenröder R, Barth FG (1983) Vibratory signals and spider behavior: how do the sensory inputs from the eight legs interact in orientation? J Comp Physiol A 152:361–371CrossRefGoogle Scholar
  29. Hill PSM (2008) Vibrational communication in animals. Harvard University Press, CambridgeGoogle Scholar
  30. Hill PSM (2014) Stretching the paradigm or building a new? Development of a cohesive language for vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 13–30Google Scholar
  31. Hill PSM, Shadley R (2001) Talking back: sending soil vibration signals to lekking prairie mole cricket males. Am Zool 41:1200–1214Google Scholar
  32. Hoy RR, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41:433–450PubMedCrossRefPubMedCentralGoogle Scholar
  33. Inta R, Lai JCS, Fu EW, Evans TA (2007) Termites live in a material world: exploration of their ability to differentiate between food sources. J R Soc Interface 4:735–744PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kirchner L, Hager FA, Kirchner WH (2017) Directional vibration sensing in Euschistus heros. In: Book of abstracts, 16th international meeting on invertebrate sound and vibration, Gießen, Germany, 14–17 September 2017. www.uni-giessen.de/fbz/fb08/Inst/tphys/isv/program/prog1
  35. Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 277–302Google Scholar
  36. Lang HH (1980) Surface wave discrimination between prey and nonprey by the back swimmer Notonecta glauca L. (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6:233–246CrossRefGoogle Scholar
  37. Latimer W, Schatral A (1983) The acoustic behaviour of the bushcricket Tettigonia cantans I. Behavioural responses to sound and vibration. Behav Process 8:113–124CrossRefGoogle Scholar
  38. Laumann RA, Moraes MCB, Čokl A, Borges M (2007) Eavesdropping on sexual vibratory signals of stink bugs (Hemiptera: Pentatomidae) by the egg parasitoid Telenomus podisi. Anim Behav 73:637–649CrossRefGoogle Scholar
  39. Markl H (1967) Die Verständigung durch Stridulationssignale bei Blattschneiderameisen. I Die biologische Bedeutung der Stridulation. Z Vergl Physiol 57:299–330CrossRefGoogle Scholar
  40. Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioural physiology: roots and growing points. Springer, Berlin, pp 332–353CrossRefGoogle Scholar
  41. Markl H, Wiese K (1969) Die Empfindlichkeit des Rückenschwimmers Notonecta glauca L. für Oberflächenwellen des Wassers. Z Vergl Physiol 62:413–420CrossRefGoogle Scholar
  42. Markl H, Lang H, Wiese K (1973) Die Genauigkeit der Ortung eines Wellenzentrums durch den Rückenschwimmer Notonecta glauca L. J Comp Physiol 86:359–364CrossRefGoogle Scholar
  43. Mason AC, Faure PA (2004) The physiology of insect auditory afferents. Microsc Res Tech 63:338–350PubMedCrossRefPubMedCentralGoogle Scholar
  44. Mason AC, Oshinsky ML, Hoy RR (2001) Hyperacute directional hearing in a microscale auditory system. Nature 410:686–690PubMedCrossRefGoogle Scholar
  45. Mazzoni V, Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M (2014) Active space and the role of amplitude in plant-borne vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 125–146Google Scholar
  46. Mencinger B (1998) Prey recognition in larvae of the antlion Euroleon nostras (Neuroptera: Myrmeleontidae). Acta Zool Fenn 209:157–161Google Scholar
  47. Mencinger-Vračko B, Devetak D (2008) Orientation of the pit-building antlion larva Euroleon (Neuroptera, Myrmeleontidae) to the direction of substrate vibrations caused by prey. Zoology 111:2–8PubMedCrossRefPubMedCentralGoogle Scholar
  48. Meyhöfer R, Casas J (1999) Vibratory stimuli in host location by parasitic wasps. J Insect Physiol 45:967–971CrossRefGoogle Scholar
  49. Michelsen A (2014) Physical aspects of vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 199–214Google Scholar
  50. Michelsen A, Larsen ON (2008) Pressure difference receiving ears. Bioinspir Biomim 3:011001PubMedCrossRefPubMedCentralGoogle Scholar
  51. Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281CrossRefGoogle Scholar
  52. Mörchen A, Rheinlaender J, Schwarzkopff J (1978) Latency shift in insects auditory nerve fibers. Naturwissenschaften 65:656–657CrossRefGoogle Scholar
  53. Mortimer B (2017) Biotremology: do physical constraints limit the propagation of vibrational information? Anim Behav 130:165–174CrossRefGoogle Scholar
  54. Murphey RK (1971) Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remiges. Z Vergl Physiol 72:168–185CrossRefGoogle Scholar
  55. Murphey RK (1973) Mutual inhibition and the organization of a non-visual orientation in Notonecta. J Comp Physiol 84:31–40CrossRefGoogle Scholar
  56. Ota D, Čokl A (1991) Mate location in the Southern green stink bug, Nezara viridula (Heteroptera: Pentatomidae), mediated through substrate-borne signals in ivy. J Insect Behav 4:441–447CrossRefGoogle Scholar
  57. Pielström S, Roces F (2012) Vibrational communication in the spatial organization of collective digging in the leaf-cutting ant Atta vollenweideri. Anim Behav 84:743–752CrossRefGoogle Scholar
  58. Prešern J, Polajnar J, de Groot M, Zorović M, Virant-Doberlet M (2018) On the spot: utilization of directional cues in vibrational communication of a stink bug. Sci Rep 8:5418PubMedPubMedCentralCrossRefGoogle Scholar
  59. Roces F, Hölldobler B (1996) Use of stridulation for foraging leaf-cutting ants: mechanical support during cutting or short-range recruitment signal? Behav Ecol Sociobiol 39:293–299CrossRefGoogle Scholar
  60. Roces F, Tautz J, Hölldobler B (1993) Stridulation in leaf-cutting ants: short-range recruitment through plant-borne vibrations. Naturwissenschaften 80:521–524CrossRefGoogle Scholar
  61. Rupprecht R (1968) Das Trommeln der Plecopteren. Z Vergl Physiol 59:38–71CrossRefGoogle Scholar
  62. Rupprecht R (1969) Zur Artspezifität der Trommelsignale der Plecopteren (Insecta). Oikos 20:26–33CrossRefGoogle Scholar
  63. Schöneich S, Hedwig B (2010) Hyperacute directional hearing and phonotactic steering in the cricket (Gryllus bimaculatus deGeer). PLoS One 5:e15141PubMedPubMedCentralCrossRefGoogle Scholar
  64. Stewart KW, Sandberg JB (2006) Vibratory communication and mate searching behaviour in stoneflies. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. Taylor and Francis, Boca Raton, FL, pp 179–186Google Scholar
  65. Stewart KW, Zeigler DD (1984) The use of larval morphology and drumming in Plecoptera systematics, and further studies of drumming behavior. Ann Limnol 20:105–114CrossRefGoogle Scholar
  66. Stritih N (2009) Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing Ensiferan (Troglophilus neglectus, Rhaphidophoridae). J Comp Neurol 516:519–532PubMedPubMedCentralCrossRefGoogle Scholar
  67. Stritih N, Virant-Doberlet M, Čokl A (2000) Green stink bug Nezara viridula detects differences in amplitude between courtship song vibrations at stem and petiolus. Eur J Phys 439:R190–R192CrossRefGoogle Scholar
  68. Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134CrossRefGoogle Scholar
  69. Virant-Doberlet M, Čokl A, Zorović M (2006) Use of substrate vibrations for orientation: from behavior to physiology. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. Taylor and Francis, London, pp 81–97Google Scholar
  70. Wäckers FL, Mitter E, Dorn S (1998) Vibrational sounding by a pupal parasitoid Pimpla (Coccygomimus) turionellea: an additional solution to the reliability-detectability problem. Biol Control 11:141–146CrossRefGoogle Scholar
  71. Weidemann S, Keuper A (1987) Influence of vibratory signals on the phonotaxis of the gryllid Gryllus bimaculatus DeGeer (Ensifera: Gryllidae). Oecologia 74:316–318PubMedCrossRefPubMedCentralGoogle Scholar
  72. Wiese K (1972) Das mechanorezeptorische Beuteortungssystem von Notonecta. I. Die Funktion des tarsalen Scolopidialorgans. J Comp Physiol 78:83–102CrossRefGoogle Scholar
  73. Wiese K (1974) The mechanoreceptive system of prey localization in Notonecta. II. The principle of prey localization. J Comp Physiol 92:317–325CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany

Personalised recommendations