Advertisement

Near-Wall Turbulence in a Localized Puff in a Pipe

  • Alexander YakhotEmail author
  • Yuri Feldman
  • David Moxey
  • Spencer Sherwin
  • George Em Karniadakis
Conference paper
  • 286 Downloads
Part of the Springer Proceedings in Physics book series (SPPHY, volume 226)

Abstract

We have performed direct numerical simulations of a transitional flow in a pipe for \(Re_m=2250\) when turbulence manifests in the form of fleshes (puffs). From experiments and simulations, \(Re_m \approx 2250\) has been estimated as a threshold when the average speeds of upstream and downstream fronts of a puff are identical (Song et al. in J Fluid Mech 813:283–304, 2017, [1]). The flow regime upstream of its trailing edge and downstream of its leading edge is almost laminar. To collect the velocity data, at each time instance, we followed a turbulent puff by a three-dimensional moving window centered at the location of the maximum energy of the transverse (turbulent) motion. In the near-wall region, despite the low Reynolds number, the turbulence statistics, in particular, the distribution of turbulence intensities and Reynolds shear stress becomes similar to a fully-developed turbulent pipe flow.

References

  1. 1.
    B. Song, D. Barkley, M. Avila, B. Hof, Speed and structure of turbulent fronts in pipe flow. J. Fluid Mech. 813, 283–304 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    I.J. Wygnanski, M. Sokolov, D. Friedman, On transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech. 69, 283–304 (1975)CrossRefGoogle Scholar
  3. 3.
    D. Barkley, Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, P1–80 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Moxey, D. Barkley, Distinct large-scale turbulent-laminar states in transitional pipe flow. PNAS 107, 8091–8096 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, B. Hof, The onset of turbulence in pipe flow. Science 333, 192–196 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Yakhot, Y. Feldman, D. Moxey, S. Sherwin, G.E. Kardiadakis, Flow Turb. Combust. (2019).  https://doi.org/10.1007/s10494-018-0002-8CrossRefGoogle Scholar
  7. 7.
    C.W.H. van Doorne, J. Westerweel, The flow structure of a puff. Philos. Trans. R. Soc. Lond. A 367, 1045–1059 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    J.G.M. Eggels, F. Unger, M.H. Weiss, J. Westerweel, R.J. Adrian, R. Friedrich, F.T.M. Nieuwstadt, Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–209 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander Yakhot
    • 1
    Email author
  • Yuri Feldman
    • 1
  • David Moxey
    • 2
  • Spencer Sherwin
    • 3
  • George Em Karniadakis
    • 4
  1. 1.Department of Mechanical EngineeringBen-Gurion UniversityBeershevaIsrael
  2. 2.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
  3. 3.Department of AeronauticsImperial College LondonLondonUK
  4. 4.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations