Advertisement

On Bounded-Memory Stream Data Processing with Description Logics

  • Özgür Lütfü ÖzçepEmail author
  • Ralf Möller
Chapter
  • 383 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11560)

Abstract

Various research groups of the description logic community, in particular the group of Franz Baader, have been involved in recent efforts on temporalizing or streamifying ontology-mediated query answering (OMQA). As a result, various temporal and streamified extensions of query languages for description logics with different expressivity were investigated. For practically useful implementations of OMQA systems over temporal and streaming data, efficient algorithms for answering continuous queries are indispensable. But, depending on the expressivity of the query and ontology language, finding an efficient algorithm may not always be possible. Hence, the aim should be to provide criteria for easily checking whether an efficient algorithm exists at all and, possibly, to describe such an algorithm for a given query. In particular, for stream data it is important to find simple criteria that help deciding whether a given OMQA query can be answered with sub-linear space w.r.t. the length of a growing stream prefix. An important special case dealt with under the term “bounded memory” is that of testing for constant space. This paper discusses known syntactical criteria for bounded-memory processing of SQL queries over relational data streams and describes how these criteria from the database community can be lifted to criteria of bounded-memory query answering in the streamified OMQA setting. For illustration purposes, a syntactic criterion for bounded-memory processing of queries formulated in a fragment of the stream-temporal query language STARQL is given.

Keywords

Streams Bounded memory Ontology-mediated query answering Ontology-based data access 

References

  1. 1.
    Aggarwal, C.C. (ed.): Data Streams: Models and Algorithms. Advances in Database Systems, vol. 31. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-0-387-47534-9CrossRefzbMATHGoogle Scholar
  2. 2.
    Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event streams. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 147–160, SIGMOD 2008. ACM, New York (2008)Google Scholar
  3. 3.
    Arasu, A., Babcock, B., Babu, S., McAlister, J., Widom, J.: Characterizing memory requirements for queries over continuous data streams. ACM Trans. Database Syst. 29(1), 162–194 (2004)CrossRefGoogle Scholar
  4. 4.
    Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB J. 15, 121–142 (2006)CrossRefGoogle Scholar
  5. 5.
    Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description logic for ontology-based data access. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 711–717. AAAI Press (2013). http://dl.acm.org/citation.cfm?id=2540128.2540232
  6. 6.
    Baader, F., Borgwardt, S., Lippmann, M.: Temporalizing ontology-based data access. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 330–344. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38574-2_23CrossRefGoogle Scholar
  7. 7.
    Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40787-1_4CrossRefzbMATHGoogle Scholar
  8. 8.
    Bienvenu, M.: Ontology-mediated query answering: harnessing knowledge to get more from data. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 4058–4061. IJCAI/AAAI Press (2016). http://www.ijcai.org/Abstract/16/600
  9. 9.
    Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the description logic DL-Lite. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 165–180. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40885-4_11CrossRefGoogle Scholar
  10. 10.
    Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages over knowledge bases. J. Web Semant. 33, 50–70 (2015).  https://doi.org/10.1016/j.websem.2014.11.007. http://www.sciencedirect.com/science/article/pii/S157082681400119XCrossRefGoogle Scholar
  11. 11.
    Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012).  https://doi.org/10.4018/jswis.2012010103CrossRefGoogle Scholar
  12. 12.
    Chomicki, J.: Efficient checking of temporal integrity constraints using bounded history encoding. ACM Trans. Database Syst. 20(2), 149–186 (1995)CrossRefGoogle Scholar
  13. 13.
    Chomicki, J., Toman, D.: Temporal databases. In: Handbook of Temporal Reasoning in Artificial Intelligence, vol. 1, pp. 429–467. Elsevier (2005)Google Scholar
  14. 14.
    Cormode, G.: The continuous distributed monitoring model. SIGMOD Rec. 42(1), 5–14 (2013)CrossRefGoogle Scholar
  15. 15.
    Della Valle, E., Ceri, S., Barbieri, D., Braga, D., Campi, A.: A first step towards stream reasoning. In: Domingue, J., Fensel, D., Traverso, P. (eds.) Future Internet - FIS 2008. Lecture Notes in Computer Science, vol. 5468, pp. 72–81. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Gurevich, Y., Leinders, D., Van den Bussche, J.: A theory of stream queries. In: Arenas, M., Schwartzbach, M.I. (eds.) DBPL 2007. LNCS, vol. 4797, pp. 153–168. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75987-4_11CrossRefGoogle Scholar
  17. 17.
    Kharlamov, E., et al.: Towards analytics aware ontology based access to static and streaming data. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 344–362. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46547-0_31CrossRefGoogle Scholar
  18. 18.
    Kharlamov, E., et al.: An ontology-mediated analytics-aware approach to support monitoring and diagnostics of static and streaming data. J. Web Seman. (2018, in print)Google Scholar
  19. 19.
    Kharlamov, E., et al.: Semantic access to streaming and static data at Siemens. Web Semant.: Sci. Serv. Agents World Wide Web 44, 54–74 (2017).  https://doi.org/10.1016/j.websem.2017.02.001CrossRefGoogle Scholar
  20. 20.
    Kharlamov, E., et al.: How semantic technologies can enhance data access at siemens energy. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 601–619. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9_38CrossRefGoogle Scholar
  21. 21.
    Özçep, Ö.L., Möller, R.: Ontology based data access on temporal and streaming data. In: Koubarakis, M., et al. (eds.) Reasoning Web 2014. LNCS, vol. 8714, pp. 279–312. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10587-1_7CrossRefGoogle Scholar
  22. 22.
    Özçep, Ö.L., Möller, R., Neuenstadt, C., Zheleznyakov, D., Kharlamov, E.: Deliverable D5.1 - a semantics for temporal and stream-based query answering in an OBDA context. Deliverable FP7-318338, EU, October 2013Google Scholar
  23. 23.
    Özçep, Ö.L., Möller, R., Neuenstadt, C.: A stream-temporal query language for ontology based data access. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS (LNAI), vol. 8736, pp. 183–194. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11206-0_18CrossRefGoogle Scholar
  24. 24.
    Özçep, Ö.L., Möller, R., Neuenstadt, C.: Stream-query compilation with ontologies. In: Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 457–463. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26350-2_40CrossRefGoogle Scholar
  25. 25.
    Patnaik, S., Immerman, N.: Dyn-FO: a parallel, dynamic complexity class. J. Comput. Syst. Sci. 55(2), 199–209 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_24CrossRefGoogle Scholar
  27. 27.
    Thost, V.: Using ontology-based data access to enable context recognition in the presence of incomplete information. Ph.D. thesis, TU Dresden (2017)CrossRefGoogle Scholar
  28. 28.
    Turhan, A., Zenker, E.: Towards temporal fuzzy query answering on stream-based data. In: Nicklas, D., Özçep, Ö.L. (eds.) Proceedings of the 1st Workshop on High-Level Declarative Stream Processing Co-located with the 38th German AI Conference (KI 2015), CEUR Workshop Proceedings, Dresden, Germany, 22 September 2015, vol. 1447, pp. 56–69. CEUR-WS.org (2015). http://ceur-ws.org/Vol-1447/paper5.pdf

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Information Systems (IFIS)University of LübeckLübeckGermany

Personalised recommendations