Advertisement

15 Years of Consequence-Based Reasoning

  • David Tena CucalaEmail author
  • Bernardo Cuenca Grau
  • Ian Horrocks
Chapter
  • 314 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11560)

Abstract

Description logics (DLs) are a family of formal languages for knowledge representation with numerous applications. Consequence-based reasoning is a promising approach to DL reasoning which can be traced back to the work of Franz Baader and his group on efficient subsumption algorithms for the \(\mathcal {EL}\) family of DLs circa 2004. Consequence-based reasoning combines ideas from hypertableaux and resolution in a way that has proved very effective in practice, and it still remains an active field of research. In this paper, we review the evolution of the field in the last 15 years and discuss the various consequence-based calculi that have been developed for different DLs, from the lightweight \(\mathcal {EL}\) to the expressive \(\mathcal {SROIQ}\). We thus provide a comprehensive and up-to-date analysis that highlights the common characteristics of these calculi and discusses their implementation.

Keywords

Description Logics Automated reasoning Ontologies Knowledge representation 

References

  1. 1.
    Armas Romero, A., Kaminski, M., Cuenca Grau, B., Horrocks, I.: Module extraction in expressive ontology languages via datalog reasoning. J. Artif. Intell. Res. 55, 499–564 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 364–369. Morgan Kaufmann Publishers, Edinburgh (2005)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 325–330. Morgan Kaufmann Publishers, Acapulco (2003)Google Scholar
  6. 6.
    Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  7. 7.
    Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 96–103 (1999)Google Scholar
  8. 8.
    Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006).  https://doi.org/10.1007/11814771_25CrossRefGoogle Scholar
  9. 9.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier Science, London (2001)CrossRefGoogle Scholar
  10. 10.
    Bate, A., Motik, B., Cuenca Grau, B., Simancik, F., Horrocks, I.: Extending consequence-based reasoning to SRIQ. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, pp. 187–196. AAAI Press, Cape Town (2016)Google Scholar
  11. 11.
    Bate, A., Motik, B., Cuenca Grau, B., Tena Cucala, D., Simancik, F., Horrocks, I.: Consequence-based reasoning for description logics with disjunctions and number restrictions. J. Artif. Intell. Res. 63, 625–690 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Brandt, S.: Polynomial time reasoning in a description Logic with existential restrictions, GCI axioms, and—what else? In: Proceedings of the 16th European Conference on Artificial Intelligence, Valencia, Spain, pp. 298–302 (2004)Google Scholar
  13. 13.
    Carral, D., Dragoste, I., Krötzsch, M.: The combined approach to query answering in horn-ALCHOIQ. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, pp. 339–348. AAAI Press, Tempe (2018)Google Scholar
  14. 14.
    Feier, C., Carral, D., Stefanoni, G., Grau, B.C., Horrocks, I.: The combined approach to query answering beyond the OWL 2 profiles. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, pp. 2971–2977. AAAI Press, Buenos Aires (2015)Google Scholar
  15. 15.
    Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: Proceedings of the 14th IEEE Symposium on Logic in Computer Science, pp. 295–305. IEEE Computer Society, Trento (1999)Google Scholar
  16. 16.
    Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for guarded formulae. J. Symb. Comput. 36(1–2), 163–192 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 reasoner. J. Autom. Reason. 53(3), 245–269 (2014)CrossRefGoogle Scholar
  18. 18.
    Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The RacerPro knowledge representation and reasoning system. Semant. Web 3(3), 267–277 (2012)Google Scholar
  19. 19.
    Horrocks, I., Sattler, U.: A tableaux decision procedure for \(\cal{SHOIQ}\). In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, UK, pp. 448–453 (2005)Google Scholar
  20. 20.
    Hustadt, U., Schmidt, R.A.: Issues of decidability for description logics in the framework of resolution. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761, pp. 191–205. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-46508-1_13CrossRefzbMATHGoogle Scholar
  21. 21.
    Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics in the framework of resolution. Inf. Comput. 206(5), 579–601 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hustadt, U., Schmidt, R.A.: Using resolution for testing modal satisfiability and building models. J. Autom. Reason. 28(2), 205–232 (2002)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Karahroodi, N.Z., Haarslev, V.: A consequence-based algebraic calculus for \(\cal{SHOQ}\). In: Proceedings of the 30th International Workshop on Description Logics. CEUR Workshop Proceedings, Montpellier, France, vol. 1879 (2017)Google Scholar
  24. 24.
    Kazakov, Y.: Consequence-driven reasoning for horn \(\cal{SHIQ}\) ontologies. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, pp. 2040–2045 (2009)Google Scholar
  25. 25.
    Kazakov, Y., Klinov, P.: Bridging the gap between tableau and consequence-based reasoning. In: Informal Proceedings of the 27th International Workshop on Description Logics, Vienna, Austria, pp. 579–590 (2014)Google Scholar
  26. 26.
    Kazakov, Y., Krötzsch, M., Simančík, F.: Practical reasoning with nominals in the EL family of description logics. In: Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning (2012)Google Scholar
  27. 27.
    Kazakov, Y., Krötzsch, M., Simančík, F.: The incredible ELK—from polynomial procedures to efficient reasoning with \(\cal{EL}\) ontologies. J. Autom. Reason. 53(1), 1–61 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kazakov, Y., Motik, B.: A resolution-based decision procedure for \(\cal{SHOIQ}\). J. Autom. Reason. 40(2–3), 89–116 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to query answering in DL-Lite. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference. AAAI Press, Toronto (2010)Google Scholar
  30. 30.
    Lutz, C.: Complexity of terminological reasoning revisited. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 181–200. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48242-3_12CrossRefGoogle Scholar
  31. 31.
    Metke-Jimenez, A., Lawley, M.: Snorocket 2.0: concrete domains and concurrent classification. In: Informal Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation, Ulm, Germany, vol. 1015, pp. 32–38 (2013)Google Scholar
  32. 32.
    Motik, B.: KAON2 - scalable reasoning over ontologies with large data sets. ERCIM News 2008(72), 19–20 (2008)Google Scholar
  33. 33.
    Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language Profiles. http://www.w3.org/TR/owl2-profiles/
  34. 34.
    de Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal logics. Log. J. IGPL 8(3), 265–292 (2000)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ortiz, M., Rudolph, S., Simkus, M.: Worst-case optimal reasoning for the horn-DL fragments of OWL 1 and 2. In: Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning, Toronto, Canada. AAAI Press (2010)Google Scholar
  36. 36.
    Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier, Amsterdam (2001)zbMATHGoogle Scholar
  37. 37.
    Schmidt, R.A., Hustadt, U.: First-order resolution methods for modal logics. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 345–391. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37651-1_15CrossRefzbMATHGoogle Scholar
  38. 38.
    Simančík, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn ontologies. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 1093–1098. IJCAI/AAAI, Barcelona (2011)Google Scholar
  39. 39.
    Simančík, F., Motik, B., Horrocks, I.: Consequence-based and fixed-parameter tractable reasoning in description logics. Artif. Intell. 209, 29–77 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)CrossRefGoogle Scholar
  41. 41.
    Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. Web Semant. 27(1), 78–85 (2014)CrossRefGoogle Scholar
  42. 42.
    Tena Cucala, D., Cuenca Grau, B., Horrocks, I.: Consequence-based reasoning for description logics with disjunction, inverse roles, and nominals. In: Proceedings of the 30th International Workshop on Description Logics. CEUR-WS.org, Montpelier (2017)Google Scholar
  43. 43.
    Tena Cucala, D., Cuenca Grau, B., Horrocks, I.: Consequence-based reasoning for description logics with disjunction, inverse roles, number restrictions, and nominals. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 1970–1976. ijcai.org, Stockholm (2018)Google Scholar
  44. 44.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006).  https://doi.org/10.1007/11814771_26CrossRefGoogle Scholar
  45. 45.
    Vlasenko, J., Daryalal, M., Haarslev, V., Jaumard, B.: A saturation-based algebraic reasoner for ELQ. In: Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning co-located with International Joint Conference on Automated Reasoning, Coimbra, Portugal, pp. 110–124 (2016)Google Scholar
  46. 46.
    W3C OWL Working Group: OWL 2 Web Ontology Language Overview. http://www.w3.org/TR/owl2-overview/
  47. 47.
    Wos, L., Robinson, G.: Paramodulation and theorem-proving in first-order theories with equality. In: Michie, D., Meltzer, B. (eds.) Proceedings of the 4th Annual Machine Intelligence Workshop. Edinburgh University Press, Edinburgh (1969)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Tena Cucala
    • 1
    Email author
  • Bernardo Cuenca Grau
    • 1
  • Ian Horrocks
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations