Advertisement

Explaining Axiom Pinpointing

  • Rafael PeñalozaEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11560)

Abstract

Axiom pinpointing refers to the task of highlighting (or pinpointing) the axioms in an ontology that are responsible for a given consequence to follow. This is a fundamental task for understanding and debugging very large ontologies. Although the name axiom pinpointing was only coined in 2003, the problem itself has a much older history, even if considering only description logic ontologies. In this work, we try to explain axiom pinpointing: what it is; how it works; how it is solved; and what it is useful for. To answer this questions, we take a historic look at the field, focusing mainly on description logics, and the specific contributions stemming from one researcher, who started it all in more than one sense.

References

  1. 1.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Kaelbling, L., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 364–369. Professional Book Center (2005)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  3. 3.
    Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for description logics. Fundamenta Informaticae 57(2–4), 247–279 (2003). http://content.iospress.com/articles/fundamenta-informaticae/fi57-2-4-08
  4. 4.
    Baader, F., Hladik, J., Peñaloza, R.: Automata can show PSpace results for description logics. Inf. Comput. 206(9–10), 1045–1056 (2008).  https://doi.org/10.1016/j.ic.2008.03.006MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reason. 14(1), 149–180 (1995).  https://doi.org/10.1007/BF00883932MathSciNetCrossRefGoogle Scholar
  6. 6.
    Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  7. 7.
    Baader, F., Knechtel, M., Peñaloza, R.: A generic approach for large-scale ontological reasoning in the presence of access restrictions to the ontology’s axioms. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 49–64. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04930-9_4CrossRefGoogle Scholar
  8. 8.
    Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and consequences of semantic web ontologies. J. Web Semant. 12, 22–40 (2012).  https://doi.org/10.1016/j.websem.2011.11.006CrossRefGoogle Scholar
  9. 9.
    Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in description logics more gentle. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Proceedings of the Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2018), pp. 319–328. AAAI Press (2018). https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
  10. 10.
    Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006).  https://doi.org/10.1007/11814771_25CrossRefGoogle Scholar
  11. 11.
    Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in \(\cal{EL}^+\). In: Parsia et al. [53]. http://ceur-ws.org/Vol-189/submission_8.pdf
  12. 12.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 11–27. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73099-6_4CrossRefzbMATHGoogle Scholar
  13. 13.
    Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 226–241. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71070-7_19CrossRefGoogle Scholar
  14. 14.
    Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. Autom. Reason. 45(2), 91–129 (2010).  https://doi.org/10.1007/s10817-010-9181-2MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput. 20(1), 5–34 (2010).  https://doi.org/10.1093/logcom/exn058MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \(\cal{EL}\). In: Calvanese, D., et al. (eds.) Proceedings of the 2007 International Workshop on Description Logics (DL 2007). CEUR Workshop Proceedings, vol. 250. CEUR-WS.org (2007)Google Scholar
  17. 17.
    Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \(\cal{EL}^+\). In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 52–67. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74565-5_7CrossRefGoogle Scholar
  18. 18.
    Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\cal{EL}^+\). In: Cornet, R., Spackman, K.A. (eds.) Proceedings of the Third International Conference on Knowledge Representation in Medicine. CEUR Workshop Proceedings, vol. 410. CEUR-WS.org (2008). http://ceur-ws.org/Vol-410/Paper01.pdf
  19. 19.
    Bertossi, L.E., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance. LNCS, vol. 3300. Springer, Heidelberg (2005).  https://doi.org/10.1007/b104925CrossRefzbMATHGoogle Scholar
  20. 20.
    Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for robust ontology-based data access. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 775–781. AAAI Press/IJCAI (2013). http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6904
  21. 21.
    Botha, L., Meyer, T., Peñaloza, R.: The Bayesian description logic \(\cal{BALC}\). In: Ortiz and Schneider [51]. http://ceur-ws.org/Vol-2211/paper-09.pdf
  22. 22.
    Botha, L., Meyer, T., Peñaloza, R.: The Bayesian description logic \(\cal{BALC}\). In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS, vol. 11468, pp. 339–354. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-19570-0_22CrossRefGoogle Scholar
  23. 23.
    Calvanese, D., Carbotta, D., Ortiz, M.: A practical automata-based technique for reasoning in expressive description logics. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 798–804. AAAI Press/IJCAI (2011).  https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-140
  24. 24.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. 39(3), 385–429 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ceylan, İ.İ., Mendez, J., Peñaloza, R.: The Bayesian ontology reasoner is BORN! In: Dumontier, M., et al. (eds.) Informal Proceedings of the 4th International Workshop on OWL Reasoner Evaluation (ORE-2015). CEUR Workshop Proceedings, vol. 1387, pp. 8–14. CEUR-WS.org (2015). http://ceur-ws.org/Vol-1387/paper_5.pdf
  26. 26.
    Ceylan, İ.İ., Peñaloza, R.: The Bayesian description logic \({\cal{BEL}}\). In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 480–494. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_37CrossRefGoogle Scholar
  27. 27.
    Ceylan, İ.İ., Peñaloza, R.: Reasoning in the description logic \(\cal{BEL}\) using Bayesian networks. In: Proceedings of the 2014 AAAI Workshop on Statistical Relational Artificial Intelligence. AAAI Workshops, vol. WS-14-13. AAAI (2014). http://www.aaai.org/ocs/index.php/WS/AAAIW14/paper/view/8765
  28. 28.
    Ceylan, İ.İ., Peñaloza, R.: The Bayesian ontology language \(\cal{BEL}\). J. Autom. Reason. 58(1), 67–95 (2017).  https://doi.org/10.1007/s10817-016-9386-0MathSciNetCrossRefGoogle Scholar
  29. 29.
    Comon, H., et al.: Tree automata techniques and applications (2007). http://www.grappa.univ-lille3.fr/tata. Accessed 12 Oct 2007
  30. 30.
    d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with Bayesian description logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 146–159. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87993-0_13CrossRefGoogle Scholar
  31. 31.
    Donini, F.M., Massacci, F.: Exptime tableaux for \(\cal{ALC}\). Artif. Intell. 124(1), 87–138 (2000).  https://doi.org/10.1016/S0004-3702(00)00070-9CrossRefzbMATHGoogle Scholar
  32. 32.
    Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics overwords and trees. Fundamenta Informaticae 84(3–4), 305–327 (2008). http://content.iospress.com/articles/fundamenta-informaticae/fi84-3-4-02
  33. 33.
    Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01492-5CrossRefzbMATHGoogle Scholar
  34. 34.
    Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88564-1_21CrossRefGoogle Scholar
  35. 35.
    Horridge, M., Parsia, B., Sattler, U.: Lemmas for justifications in OWL. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009). CEUR Workshop Proceedings, vol. 477. CEUR-WS.org (2009). http://ceur-ws.org/Vol-477/paper_24.pdf
  36. 36.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\cal{SROIQ}\). In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press (2006)Google Scholar
  37. 37.
    Kalyanpur, A.: Debugging and repair of OWL ontologies. Ph.D. thesis, University of Maryland College Park, USA (2006)Google Scholar
  38. 38.
    Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing unsatisfiable concepts in OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 170–184. Springer, Heidelberg (2006).  https://doi.org/10.1007/11762256_15CrossRefGoogle Scholar
  39. 39.
    Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes in OWL ontologies. J. Web Semant. 3(4), 268–293 (2005).  https://doi.org/10.1016/j.websem.2005.09.005CrossRefGoogle Scholar
  40. 40.
    Kazakov, Y., Skočovský, P.: Enumerating justifications using resolution. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 609–626. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94205-6_40CrossRefGoogle Scholar
  41. 41.
    Lee, K., Meyer, T.A., Pan, J.Z., Booth, R.: Computing maximally satisfiable terminologies for the description logic \(\cal{ALC}\) with cyclic definitions. In: Parsia et al. [53]. http://ceur-ws.org/Vol-189/submission_29.pdf
  42. 42.
    Lehmann, K., Peñaloza, R.: The complexity of computing the behaviour of lattice automata on infinite trees. Theor. Comput. Sci. 534, 53–68 (2014).  https://doi.org/10.1016/j.tcs.2014.02.036MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15918-3_9CrossRefGoogle Scholar
  44. 44.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008).  https://doi.org/10.1007/s10817-007-9084-zMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Ludwig, M., Peñaloza, R.: Error-tolerant reasoning in the description logic \(\cal{EL}\). In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 107–121. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11558-0_8CrossRefzbMATHGoogle Scholar
  46. 46.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)CrossRefGoogle Scholar
  47. 47.
    Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.: Causality in databases. IEEE Data Eng. Bull. 33(3), 59–67 (2010). http://sites.computer.org/debull/A10sept/suciu.pdf
  48. 48.
    Mencía, C., Marques-Silva, J.: Efficient relaxations of over-constrained CSPs. In: Proceedings of the 26th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2014), pp. 725–732. IEEE Computer Society (2014).  https://doi.org/10.1109/ICTAI.2014.113
  49. 49.
    Meyer, T.A., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminologies for the description logic \(\cal{ALC}\). In: Proceedings of The Twenty-First National Conference on Artificial Intelligence (AAAI 2006), pp. 269–274. AAAI Press (2006). http://www.aaai.org/Library/AAAI/2006/aaai06-043.php
  50. 50.
    Motik, B., Patel-Schneider, P.F., Cuenca Grau, B. (eds.): OWL 2 Web Ontology Language: Direct Semantics. W3C Recommendation, 27 October 2009. http://www.w3.org/TR/owl2-direct-semantics/
  51. 51.
    Ortiz, M., Schneider, T. (eds.): Proceedings of the 31st International Workshop on Description Logics (DL 2018). CEUR Workshop Proceedings, vol. 2211. CEUR-WS.org (2018)Google Scholar
  52. 52.
    Ozaki, A., Peñaloza, R.: Provenance in ontology-based data access. In: Ortiz and Schneider [51]. http://ceur-ws.org/Vol-2211/paper-28.pdf
  53. 53.
    Parsia, B., Sattler, U., Toman, D. (eds.): Proceedings of the 2006 International Workshop on Description Logics (DL 2006). CEUR Workshop Proceedings, vol. 189. CEUR-WS.org (2006)Google Scholar
  54. 54.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A., Hagino, T. (eds.) Proceedings of the 14th International Conference on World Wide Web (WWW 2005), pp. 633–640. ACM (2005).  https://doi.org/10.1145/1060745.1060837
  55. 55.
    Peñaloza Nyssen, R.: Axiom pinpointing in description logics and beyond. Ph.D. thesis, Technische Universität Dresden, Germany (2009). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24743
  56. 56.
    Peñaloza, R., Mencía, C., Ignatiev, A., Marques-Silva, J.: Lean kernels in description logics. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 518–533. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58068-5_32CrossRefGoogle Scholar
  57. 57.
    Peñaloza, R., Sertkaya, B.: Understanding the complexity of axiom pinpointing in lightweight description logics. Artif. Intell. 250, 80–104 (2017).  https://doi.org/10.1016/j.artint.2017.06.002MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Porello, D., Troquard, N., Confalonieri, R., Galliani, P., Kutz, O., Peñaloza, R.: Repairing socially aggregated ontologies using axiom weakening. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 441–449. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69131-2_26CrossRefGoogle Scholar
  59. 59.
    Price, C., Spackman, K.: Snomed clinical terms. Br. J. Healthcare Comput. Inf. Manag. 17(3), 27–31 (2000)Google Scholar
  60. 60.
    Raedt, L.D., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic prolog and its application in link discovery. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2462–2467. IJCAI (2007). http://ijcai.org/Proceedings/07/Papers/396.pdf
  61. 61.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987).  https://doi.org/10.1016/0004-3702(87)90062-2MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under the distribution semantics. Semant. Web 6(5), 477–501 (2015).  https://doi.org/10.3233/SW-140154CrossRefzbMATHGoogle Scholar
  63. 63.
    Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 466–471. Morgan Kaufmann (1991)Google Scholar
  64. 64.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 355–360. Morgan Kaufmann Publishers Inc. (2003)Google Scholar
  65. 65.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. J. Artif. Intell. 48, 1–26 (1991)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Simancik, F., Motik, B., Horrocks, I.: Consequence-based and fixed-parameter tractable reasoning in description logics. Artif. Intell. 209, 29–77 (2014)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Simančík, F.: Consequence-based reasoning for ontology classification. Ph.D. thesis, University of Oxford (2013). https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581368
  68. 68.
    Suntisrivaraporn, B.: Polynomial time reasoning support for design and maintenance of large-scale biomedical ontologies. Ph.D. thesis, Technische Universität Dresden, Germany (2009). http://hsss.slub-dresden.de/deds-access/hsss.urlmapping.MappingServlet?id=1233830966436-5928
  69. 69.
    Suntisrivaraporn, B., Baader, F., Schulz, S., Spackman, K.: Replacing SEP-triplets in SNOMED CT using tractable description logic operators. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 287–291. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73599-1_38CrossRefGoogle Scholar
  70. 70.
    Troquard, N., Confalonieri, R., Galliani, P., Peñaloza, R., Porello, D., Kutz, O.: Repairing ontologies via axiom weakening. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018), pp. 1981–1988. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17189
  71. 71.
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. Comput. Syst. Sci. 32(2), 183–221 (1986).  https://doi.org/10.1016/0022-0000(86)90026-7MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Xiao, G., et al.: Ontology-based data access: a survey, pp. 5511–5519. ijcai.org (2018).  https://doi.org/10.24963/ijcai.2018/777
  73. 73.
    Zese, R., Bellodi, E., Riguzzi, F., Cota, G., Lamma, E.: Tableau reasoning for description logics and its extension to probabilities. Ann. Math. Artif. Intell. 82(1–3), 101–130 (2018).  https://doi.org/10.1007/s10472-016-9529-3MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Milano-BicoccaMilanItaly

Personalised recommendations