Advertisement

Temporally Attributed Description Logics

  • Ana OzakiEmail author
  • Markus KrötzschEmail author
  • Sebastian Rudolph
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11560)

Abstract

Knowledge graphs are based on graph models enriched with (sets of) attribute-value pairs, called annotations, attached to vertices and edges. Many application scenarios of knowledge graphs crucially rely on the frequent use of annotations related to time. Building upon attributed logics, we design description logics enriched with temporal annotations whose values are interpreted over discrete time. Investigating the complexity of reasoning in this new formalism, it turns out that reasoning in our temporally attributed description logic \(\mathcal {ALCH} ^{\mathbb {T}}_@\) is highly undecidable; thus we establish restrictions where it becomes decidable, and even tractable.

Notes

Acknowledgements

This work is partly supported by the German Research Foundation (DFG) in CRC 248 (Perspicuous Systems), CRC 912 (HAEC), and Emmy Noether grant KR 4381/1-1; and by the European Research Council (ERC) Consolidator Grant 771779 (DeciGUT).

Supplementary material

References

  1. 1.
    Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Artale, A., Franconi, E., Peñaloza, R., Sportelli, F.: A decidable very expressive description logic for databases. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 37–52. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_3CrossRefGoogle Scholar
  3. 3.
    Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tractable description logics. In 14th International Symposium on Temporal Representation and Reasoning (TIME 2007), 28–30 June 2007, Alicante, Spain, pp. 11–22 (2007)Google Scholar
  4. 4.
    Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description logic for ontology-based data access. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 711–717 (2013)Google Scholar
  5. 5.
    Baader, F., Borgwardt, S., Koopmann, P., Ozaki, A., Thost, V.: Metric temporal description logics with interval-rigid names. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 60–76. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66167-4_4CrossRefGoogle Scholar
  6. 6.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 364–369. Professional Book Center (2005)Google Scholar
  7. 7.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
  8. 8.
    Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans. Comput. Log. 13(3) (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Baader, F., Lutz, C., Turhan, A.-Y.: Small is again beautiful in description logics. KI 24(1), 25–33 (2010)Google Scholar
  10. 10.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell. 168(1–2), 70–118 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Borgwardt, S., Thost, V.: Temporal query answering in the description logic EL. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 2819–2825 (2015)Google Scholar
  12. 12.
    Bourgaux, C., Ozaki, A.: Querying attributed DL-Lite ontologies using provenance semirings. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (2019)Google Scholar
  13. 13.
    Brandt, S., Kalayci, E., Kontchakov, R., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Ontology-based data access with a horn fragment of metric temporal logic. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San Francisco, California, USA, pp. 1070–1076 (2017)Google Scholar
  14. 14.
    Brandt, S., Kalayci, E., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Querying log data with metric temporal logic. J. Artif. Intell. Res. 62, 829–877 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Carapelle, C., Turhan, A.-Y.: Description logics reasoning w.r.t. general TBoxes is decidable for concrete domains with the EHD-property. In: ECAI 2016–22nd European Conference on Artificial Intelligence, pp. 1440–1448 (2016)Google Scholar
  16. 16.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chomicki, J.: Temporal query languages: a survey. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 506–534. Springer, Heidelberg (1994).  https://doi.org/10.1007/BFb0014006CrossRefzbMATHGoogle Scholar
  18. 18.
    Fisher, M.D., Gabbay, D.M., Vila, L. (eds.): Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier (2005)Google Scholar
  19. 19.
    Gutiérrez-Basulto, V., Jung, J.C., Ozaki, A.: On metric temporal description logics. In Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI 2016), pp. 837–845. IOS Press (2016)Google Scholar
  20. 20.
    Harel, D.: Effective transformations on infinite trees, with applications to high undecidability, dominoes, and fairness. J. ACM 33(1), 224–248 (1986)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and temporally enhanced knowledge base from wikipedia. J. Artif. Intell. 194, 28–61 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Krötzsch, M.: Ontologies for knowledge graphs? In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proceedings of the 30th International Workshop on Description Logics (DL 2017). CEUR Workshop Proceedings, vol. 1879, CEUR-WS.org (2017)Google Scholar
  23. 23.
    Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: ontologies for knowledge graphs. In: The Semantic Web - ISWC - 16th International Semantic Web Conference, pp. 418–435 (2017)Google Scholar
  24. 24.
    Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: reasoning on knowledge graphs. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI, pp. 5309–5313 (2018)Google Scholar
  25. 25.
    Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of horn description logics. ACM Trans. Comput. Log. 14(1), 2:1–2:36 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Leo, J., Sattler, U., Parsia, B.: Temporalising EL concepts with time intervals. In: Proceedings of the 27th International Workshop on Description Logics (DL 2014). CEUR Workshop Proceedings, vol. 1193, pp. 620–632. CEUR-WS.org (2014)Google Scholar
  27. 27.
    Lutz, C.: The complexity of description logics with concrete domains. Ph.D. thesis, RWTH Aachen University, Germany (2002)Google Scholar
  28. 28.
    Lutz, C.: Combining interval-based temporal reasoning with general TBoxes. Artif. Intell. 152(2), 235–274 (2004)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lutz, C., Haarslev, V., Möller, R.: A concept language with role-forming predicate restrictions. Technical report, University of Hamburg (1997)Google Scholar
  30. 30.
    Lutz, C., Möller, R.: Defined topological relations in description logics. In: Brachman, R.J., et al. (eds.) Proceedings of the 1997 International Workshop on Description Logics (DL 1997). URA-CNRS, vol. 410 (1997)Google Scholar
  31. 31.
    Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: a survey. In: 15th International Symposium on Temporal Representation and Reasoning, TIME, pp. 3–14 (2008)Google Scholar
  32. 32.
    Marx, M., Krötzsch, M., Thost, V.: Logic on MARS: ontologies for generalised property graphs. In: Sierra, C. (ed.) Proceedings of the 26th International Joint Conferences on Artificial Intelligence (IJCAI 2017). IJCAI, pp. 1188–1194 (2017)Google Scholar
  33. 33.
    openCypher community. Cypher Query Language Reference, Version 9. http://www.opencypher.org/resources (2019)
  34. 34.
    Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc. Inf. Sci. Technol. 36(6), 35–41 (2010)CrossRefGoogle Scholar
  35. 35.
    Rogers Jr., H.: Theory of Recursive Functions and Effective Computability, Paperback edn. MIT Press (1987)Google Scholar
  36. 36.
    Rudolph, S., Krötzsch, M., Hitzler, P.: Cheap boolean role constructors for description logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 362–374. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87803-2_30CrossRefzbMATHGoogle Scholar
  37. 37.
    Sportelli, F., Franconi, E.: Formalisation of ORM derivation rules and their mapping into OWL. In: Debruyne, C., et al. (eds.) On the Move to Meaningful Internet Systems: OTM 2016 Conferences, OTM 2016. Lecture Notes in Computer Science, vol. 10033, pp. 827–843. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48472-3_52CrossRefGoogle Scholar
  38. 38.
    Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)CrossRefGoogle Scholar
  39. 39.
    Wolter, F., Zakharyaschev, M.: Temporalizing description logics. Front. Combin. Syst. 2, 379–402 (1999)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.KRDB Research CentreFree University of Bozen-BolzanoBolzanoItaly
  2. 2.TU DresdenDresdenGermany

Personalised recommendations