Advertisement

CNC Processing Equipment’s Technical Operability Evaluation by Developing Mathematical Models Based on Continuous Logic of Antonyms

  • E. KrylovEmail author
  • N. Kozlovtseva
  • A. Kapitanov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

As the title implies, the article describes the issues of CNC machines’ technical operability evaluation in real time. The scientific research relevance of this topic has been substantiated, and suitable monographs, articles, and regulations have been scanned. The types and causes of the automated technological equipment failures on the processing industries have been analyzed. The authors proposed a new approach to estimating the probability of equipment failure using the continuous-valued logic of antonyms, the mathematical tools technique of which allows making calculations based on linguistic variables in a convenient and informative form. The technical operability of the equipment is considered the example of a CNC machine, in particular, its electromechanical subsystem. A general solution pattern has been developed; attempts are made to present mathematical simulation. Three methods for technical operability evaluation using weighting factors are proposed. The developed methods and models make it possible to get away from traditional statistical calculations of reliability and to diagnose the state of automated equipment in a real-time mode.

Keywords

CNC machine Technical operability Condition monitoring Continuous logic Equipment failures Expert system 

Notes

Acknowledgements

The authors would like to acknowledge the support and funding provided by The Volgograd State Technical University. The research is performed within the framework of the grant of the President of the Russian Federation for the state support of young scientists (MD-6629.2018.9).

References

  1. 1.
    Mesheryakova VB, Starodubov VS (2015) Metallorezhushie stanki s CHPU (CNC metal-cutting machines). NITS INFRA-M, MoscowGoogle Scholar
  2. 2.
    Vyzhigin AY (2009) Gibkie proizvodstvennye sistemy (Flexible manufacturing systems). Mashinostroenie, MoscowGoogle Scholar
  3. 3.
    Schirtladze AG, Ukolov MS, Sazonov GG (2012) Upravlenie stankami i stanochnymi kompleksami (Control of machines and machine complexes). TNT, Staryi OskolGoogle Scholar
  4. 4.
    Krylov EG, Serdobintsev YP (2018) Povysheniye effektivnosti funktsionirovaniya instrumental’nykh sistem avtomatizirovannogo stanochnogo oborudovaniya (Improving the efficiency of the instrumental systems functioning in automated machine-tool equipment). VolgGTU, VolgogradGoogle Scholar
  5. 5.
    Krylov EG, Makarov AM, Kozlovtseva NV, Kapitanov AV (2017) Criticality identification in technological system via decision tables. Izvestia VolgGTU 5(200):68–70Google Scholar
  6. 6.
    Serdobintsev YP, Krylov EG (2015) Problem-oriented approach to improving tool operation at machining centers. Russ Eng Res 9:693–695CrossRefGoogle Scholar
  7. 7.
    Krylov EG, Sergeev AS (2014) The ultimate state control of multiblade carbide tools. Test Diagn 10:30–35Google Scholar
  8. 8.
    Krylov EG, Serdobintsev YP, Kozlovtseva NV (2013) Avtomatizirovannaya sistema kontrolya sostoyaniya rezhushchego instrumenta pri rezanii trudnoobrabatyvayemykh materialov (Automated system for monitoring the status of the cutting tool when cutting hard materials). Mekhatronika, Avtomatizatsiya, Upravlenie 10:47–51Google Scholar
  9. 9.
    Krylov EG, Kukhtic MP, Kozlovtseva NV (2018) Use of thermoelectrical phenomena for hard-alloy cutting plates control in the cutting zone. In: 2018 International Russian automation conference, p 4.  https://doi.org/10.1109/rusautocon.2018.8501835
  10. 10.
    State Standard 27.002-2015. Reliability in technology. The basic concepts. Terms and definitions. Standartinform Publ., Moscow 2016, p 24Google Scholar
  11. 11.
    Ostreikivskiy VA (2003) Teoriya nadezhnosti (Reliability theory). High school, MoscowGoogle Scholar
  12. 12.
    Polovko AM, Gurov SV (2009) Osnovy teorii nadezhnosti (Fundamentals of the reliability theory). BHV-Peterburg, Saint-PetersburgGoogle Scholar
  13. 13.
    Trukhanov VM, Tarnayev AG (2016) Nadozhnost’ i diagnostika slozhnykh system (Reliability and diagnostics of complex systems). Spectr, MoscowGoogle Scholar
  14. 14.
    Bushuyev VV, Kuznetsov AP, Sabirov FS (2016) Problemy tochnosti i effektivnosti sovremennykh metallorezhushchikh stankov (Problems of accuracy and efficiency of modern machine tools). STIN 2:6–16Google Scholar
  15. 15.
    Grigoriev SN, Kozochkin MP et al (2012) Diagnostika tekhnologicheskogo oborudovaniya v sovremennom stankostroyenii (Diagnostics of technological equipment in modern machine-tool construction). Tekhnol mashinostroyeniya 1:45–50Google Scholar
  16. 16.
    Solomentsev YM, Pavlov VV (2010) Modelirovaniye proizvoditel’nykh sistem v mashinostroyenii (Modeling of productive systems in mechanical engineering). Yanus-K, MoscowGoogle Scholar
  17. 17.
    Alaniz-Lumbreras PD (2006) Sensorless detection of tool breakage in milling. Mach Sci Technol 2:263–274CrossRefGoogle Scholar
  18. 18.
    Wang WH, Hong GS et al (2007) Sensor fusion for online tool condition monitoring in milling. Int J Prod Res 21:5095–5116CrossRefGoogle Scholar
  19. 19.
    Bosetti P, Leonesio M, Parenti P (2013) On Development of an optimal control system for real-time process optimization on milling machine. Procedia CIRP 12:31–36.  https://doi.org/10.1016/j.procir.2013.09.007CrossRefGoogle Scholar
  20. 20.
    Jankowski M, Wozniak A (2015) Mechanical model of errors of probes for numerical controlled machine tools. Measurement 77:317–326CrossRefGoogle Scholar
  21. 21.
    Nouria M, Fussella BK et al (2015) Real-time tool wear monitoring in milling using a cutting condition independent method. Int J Mach Tools Manuf 89:1–13CrossRefGoogle Scholar
  22. 22.
    Dintsis DY (2006) Sovmestnoye ispol’zovaniye nechetkologicheskikh i diskretnykh modeley dlya postroyeniya modeley tekhnologicheskikh i upravlencheskikh sistem (Sharing of fuzzy and discrete models for building models of technological and management systems). Instrum Syst: Monit, Control, Diagn 5:61–64Google Scholar
  23. 23.
    Levin VI (2003) Metody nepreryvnoy logiki v zadachakh upravleniya (Continuous logic methods in control problems). Avtomatika i Telemekhanika 3:28–51Google Scholar
  24. 24.
    Kopaneyeva IN (2002) Monitoring i upravleniye kachestvom protsessa proizvodstva s primeneniyem logiki antonimov (Monitoring and quality management of the production process using the logic of antonyms). Dissertation, St. Petersburg state techn. universityGoogle Scholar
  25. 25.
    Krylov EG, Serdobintsev YP (2015) Formalizatsiya protsedury mnogokriterial’nogo vybora rezhushchego instrumenta v ASTPP (Formalization of the procedure of multi-criteria selection of cutting tools in CAD/CAM systems). STIN 3:5–9Google Scholar
  26. 26.
    Krylov EG, Kozlovtseva NV (2015) Formalizatsiya protsessov obrabotki informatsii v sistemakh mnogoparametricheskogo kontrolya rezhushchego instrumenta (Information processing formalization in cutting tools’ multiparameter control systems). Izvestia VolgGTU 11(173):56–59Google Scholar
  27. 27.
    Krylov EG (2016) Programma mnogokriterial’nogo vybora rezhushchikh plastin (The program of cutting plates multi-criteria selection). Certificate of state registration R.F. no. 2016663002Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Volgograd State Technical UniversityVolgogradRussia
  2. 2.Stankin Moscow State Technical UniversityMoscowRussia

Personalised recommendations