Advertisement

Aerosol Intensive Optical Properties in the NMMB-MONARCH

  • Vincenzo Obiso
  • Oriol JorbaEmail author
  • Carlos Pérez García-Pando
  • Marco Pandolfi
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

The NMMB-MONARCH is a fully online integrated meteorology-chemistry model for short- and mid-term Chemical Weather Forecasts (CWF) developed at the Barcelona Supercomputing Center (Earth Sciences). The meteorological core is the Nonhydrostatic Multiscale Model on the B-grid (NMMB). The global aerosol module includes five natural and anthropogenic species: mineral dust, sea salt, organic matter, black carbon and sulfate. The full online coupling between the aerosol module and the model radiation scheme (RRTMG) has been recently implemented. We present in this work a first evaluation of the aerosol intensive optical properties required by the coupling mechanism: single scattering albedo (ω) and asymmetry factor (g). New aerosol refractive indexes from recent literature have also been tested. We found that the model performance improves when considering a less absorbing mineral dust. Moreover, in anthropogenic areas a purely scattering organic matter and a higher real index for sulfate partially reduce the model systematic biases.

References

  1. 1.
    C. Denjean, F. Cassola, A. Mazzino, S. Triquet, S. Chevaillier, N. Grand, T. Bourrianne, G. Momboisse, K. Sellegri, A. Schwarzenbock, E. Freney, M. Mallet, P. Formenti, Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean. Atmos. Chem. Phys. 16, 1081–1104 (2016)CrossRefGoogle Scholar
  2. 2.
    M.A. Freedman, C.A. Hasenkopf, M.R. Beaver, M.A. Tolbert, Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate. J. Phys. Chem. A 113, 13584–13592 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Hess, P. Köpke, I. Schult, Optical properties of aerosols and clouds: the software package OPAC. Bull. Am. Meteor. Soc. 79(5), 831–844 (1998)CrossRefGoogle Scholar
  4. 4.
    B.N. Holben, T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1–16 (1998)CrossRefGoogle Scholar
  5. 5.
    R. Irshad, R.G. Grainger, D.M. Peters, R.A. McPheat, K.M. Smith, G. Thomas, Laboratory measurements of the optical properties of sea salt aerosol. Atmos. Chem. Phys. 9, 221–230 (2009)CrossRefGoogle Scholar
  6. 6.
    O. Jorba, D. Dabdub, C. Blaszczak-Boxe, C. Pérez, Z. Janjic, J.M. Baldasano, M. Spada, A. Badia, M. Gonçalves, Potential significance of photoexcited NO2 on global air quality with the NMMB/BSC chemical transport model. J. Geophys. Res. 117(D13) (2012)CrossRefGoogle Scholar
  7. 7.
    C. Lacagnina, O.P. Hasekamp, H. Bian, G. Curci, G. Myhre, T. van Noije, M. Schulz, R.B. Skeie, T. Takemura, K. Zhang, Aerosol single-scattering albedo over the global oceans: comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates. J. Geophys. Res.: Atmos. 120, 9814–9836 (2015)Google Scholar
  8. 8.
    J. Li, B.E. Carlson, O. Dubovik, A.A. Lacis, Recent trends in aerosol optical properties derived from AERONET measurements. Atmos. Chem. Phys. 14, 12271–12289 (2014)CrossRefGoogle Scholar
  9. 9.
    P. Liu, Y. Zhang, S.T. Martin, Complex refractive indices of thin films of secondary organic materials by spectroscopic ellipsometry from 220 to 1200 nm. Environ. Sci. Technol. 47, 13594–13601 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Myhre, B.H. Samset, M. Schulz, Y. Balkanski, S. Bauer, T.K. Berntsen, H. Bian, N. Bellouin, M. Chin, T. Diehl, R.C. Easter, J. Feichter, S.J. Ghan, D. Hauglustaine, T. Iversen, S. Kinne, A. Kirkevag, J.-F. Lamarque, G. Lin, X. Liu, M.T. Lund, G. Luo, X. Ma, T. van Noije, J.E. Penner, P.J. Rasch, A. Ruiz, O. Seland, R.B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, P. Wang, Z. Wang, L. Xu, H. Yu, F. Yu, J.-H. Yoon, K. Zhang, H. Zhang, C. Zhou, Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877 (2013)CrossRefGoogle Scholar
  11. 11.
    T. Nakayama, K. Sato, Y. Matsumi, T. Imamura, A. Yamazaki, A. Uchiyama, Wavelength dependence of refractive index of secondary organic aerosols generated during the ozonolysis and photooxidation of α-pinene. Sci. Online Lett. Atmos. 8, 119–123 (2012)Google Scholar
  12. 12.
    C. Pérez, K. Haustein, Z. Janjic, O. Jorba, N. Huneeus, J.M. Baldasano, T. Black, S. Basart, S. Nickovic, R.L. Miller, J.P. Perlwitz, M. Schulz, M. Thomson, Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model—Part 1: model description, annual simulations and evaluation. Atmos. Chem. Phys. 11, 13001–13027 (2011)CrossRefGoogle Scholar
  13. 13.
    R.H. Shepherd, M.D. King, A.A. Marks, N. Brough, A.D. Ward, Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers. Atmos. Chem. Phys. 18, 5235–5252 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Spada, Development and evaluation of an atmospheric aerosol module implemented within the NMMB/BSC-CTM. Polytechnic University of Catalonia (Ph.D. Thesis), Barcelona, Spain (2015)Google Scholar
  15. 15.
    M. Spada, O. Jorba, C. Pérez García-Pando, Z. Janjic, J.M. Baldasano, Modeling and evaluation of the global sea-salt aerosol distribution: sensitivity to size-resolved and sea-surface temperature dependent emission schemes. Atmos. Chem. Phys. 13, 11735–11755 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Wiedinmyer, R.J. Yokelson, B.K. Gullett, Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Environ. Sci. Technol. 48, 9523–9530 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vincenzo Obiso
    • 1
  • Oriol Jorba
    • 1
    Email author
  • Carlos Pérez García-Pando
    • 1
  • Marco Pandolfi
    • 2
  1. 1.Earth Sciences DepartmentBarcelona Supercomputing Center (BSC)BarcelonaSpain
  2. 2.Institute of Environmental Assessment and Water Research, (IDAEA-CSIC)BarcelonaSpain

Personalised recommendations