Advertisement

Global CO Emission Estimates Inferred from Assimilation of MOPITT CO, Together with Observations of O3, NO2, HNO3, and HCHO

  • Xuesong ZhangEmail author
  • Dylan Jones
  • Martin Keller
  • Zhe Jiang
  • Adam E. Bourassa
  • D. A. Degenstein
  • Cathy Clerbaux
Conference paper
  • 76 Downloads
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Atmospheric carbon monoxide (CO) emissions estimated from inverse modeling analyses exhibit large uncertainties, due, in part, to discrepancies in the tropospheric chemistry in atmospheric models. We attempt to reduce the uncertainties in CO emission estimates by constraining the modeled abundance of ozone (O3), nitrogen dioxide (NO2), nitric acid (HNO3), and formaldehyde (HCHO), which are constituents that play a key role in tropospheric chemistry. Using the GEOS-Chem four-dimensional variational (4D-Var) data assimilation system, we estimate CO emissions by assimilating observations of CO from the Measurement of Pollution In the Troposphere (MOPITT) and the Infrared Atmospheric Sounding Interferometer (IASI), together with observations of O3 from the Optical Spectrograph and InfraRed Imager System (OSIRIS) and IASI, NO2 and HCHO from the Ozone Monitoring Instrument (OMI), and HNO3 from the Microwave Limb Sounder (MLS). Although our focus is on quantifying CO emission estimates, we also infer surface emissions of nitrogen oxides (NOx = NO + NO2) and isoprene. Our results reveal that this multiple species chemical data assimilation produces a chemical consistent state that effectively adjusts the CO–O3–OH coupling in the model. The O3-induced changes in OH are particularly large in the tropics. We show that the analysis results in a tropospheric chemical state that is better constrained. Our experiments also evaluate the inferred CO emission estimates from major anthropogenic, biomass burning and biogenic sources.

Keyword

Multi-species chemical data assimilation 4D-Var CO emissions 

Notes

Acknowledgements

This work was supported by funding from Environment and Climate Change Canada and the Natural Sciences and Engineering Research Council (NSERC).

References

  1. 1.
    D.K. Henze, A. Hakami, J.H. Seinfeld, Development of the adjoint of GEOS-Chem. Atmos. Chem. Phys. 7, 2413–2433 (2007)CrossRefGoogle Scholar
  2. 2.
    K. Miyazaki, H.J. Eskes, K. Sudo, M. Takigawa, M. van Weele, K.F. Boersma, Simultaneous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric chemical composition and emissions. Atmos. Chem. Phys. 12, 9545–9579 (2012)CrossRefGoogle Scholar
  3. 3.
    C.M. Spivakovsky, J.A. Logan, S.A. Montzka, Y.J. Balkanski, M. Foreman-Fowler, D.B.A. Jones, L.W. Horowitz, A.C. Fusco, C.A.M. Brenninkmeijer, M.J. Prather, S.C. Wofsy, M.B. McElroy, Three-dimensional climatological distribution of tropospheric OH: update and evaluation. J. Geophys. Res. Atmos. 105(D7), 8931–8980 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Xuesong Zhang
    • 1
    Email author
  • Dylan Jones
    • 1
  • Martin Keller
    • 1
  • Zhe Jiang
    • 2
  • Adam E. Bourassa
    • 3
  • D. A. Degenstein
    • 3
  • Cathy Clerbaux
    • 4
    • 5
  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada
  2. 2.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of Physics and Engineering PhysicsUniversity of SaskatchewanSaskatoonCanada
  4. 4.UPMC Université Paris 6, Université Versailles St-Quentin, LATMOS-IPSL, CNRS/INSUParisFrance
  5. 5.Spectroscopie de l’Atmosphére, Service de Chimie Quantique et PhotophysiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations