Modelling the Temporal and Spatial Allocation of Emission Data

  • Volker MatthiasEmail author
  • Jan Arndt
  • Armin Aulinger
  • Johannes Bieser
  • Markus Quante
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


Atmospheric chemistry transport models (CTMs) need spatially and temporally resolved emission data as input. Atmospheric concentrations of pollutants as well as their deposition depend not only on the emitted amount but also on place and time of the emissions used for the model calculations. Available emission inventories, both regional and global ones, typically provide annual emissions of specific substances on a predefined grid. Often, this grid is of coarser resolution than the model grid and the temporal resolution is not higher than monthly. In addition, many species like volatile organic compounds (VOCs) or particulate matter (PM) are only given as lumped sums and not split into their chemical components. This requires further processing of the emissions in order to produce sufficiently resolved data sets for follow-up CTM runs. As a consequence, emission models were developed for the purpose of creating “model-ready” emissions. They use methods that depend on the emission sector and the additional data available for the disaggregation of the inventory data, e.g. land use and population density data. Recently, new methods for specific sectors like agriculture, residential heating and traffic have been developed. The most commonly used global and regional emission inventories are summarized and an overview of currently applied methods to spatially and temporally disaggregate emission inventory data is given. Particular emphasis is laid on the temporal disaggregation by presenting methods that allow the creation of individual time profiles for each model grid cell.


  1. 1.
    A. Aulinger, V. Matthias, M. Quante, An approach to temporally disaggregate Benzo (a) pyrene emissions and their application to a 3D Eulerian atmospheric chemistry transport model. Water Air Soil Pollut. 216(1–4), 643–655 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Backes, A. Aulinger, J. Bieser, V. Matthias, M. Quante, Ammonia emissions in Europe, Part I: development of a dynamical ammonia emission inventory. Atmos. Environ. 131, 55–66 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Bieser, A. Aulinger, V. Matthias, M. Quante, H.A.C. Denier van der Gon, Vertical emission profiles for Europe based on plume rise calculations. Environ. Pollut. 159(10), 2935–2946 (2011)CrossRefGoogle Scholar
  4. 4.
    H.A.C. Denier van der Gon et al., Particulate emissions from residential wood combustion in Europe—revised estimates and an evaluation. Atmos. Chem. Phys. 15, 6503–6519 (2015)CrossRefGoogle Scholar
  5. 5.
    G. Frost et al., New Directions: GEIA’s 2020 vision for better air emissions information. Atmos. Environ. 81, 710–712 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Hendriks et al., Ammonia emission time profiles based on manure transport data improve ammonia modelling across north western Europe. Atmos. Environ. 131, 83–96 (2016)CrossRefGoogle Scholar
  7. 7.
    M.R. Houyoux et al., Emission inventory development and processing for the Seasonal Model for Regional Air Quality (SMRAQ) project. J. Geophys. Res. Atmos. 105, 9079–9909 (2000)CrossRefGoogle Scholar
  8. 8.
    U. Im et al., Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter. Atmos. Environ. (2014).
  9. 9.
    G. Janssens-Maenhout, M. Crippa, D. Guizzardi, F. Dentener, M. Muntean, G. Pouliot, T. Keating, Q. Zhang, J. Kurokawa, R. Wankmuller, H.D. van der Gon, J.J.P. Kuenen, Z. Klimont, G. Frost, S. Darras, B. Koffi, M. Li, HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 15(19), 11411–11432 (2015)CrossRefGoogle Scholar
  10. 10.
    Z. Klimont, K. Kupiainen, C. Heyes, P. Purohit, J. Cofala, P. Rafaj, J. Borken-Kleefeld, W. Schöpp, Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17(14), 8681–8723 (2017)CrossRefGoogle Scholar
  11. 11.
    V. Matthias, J.A. Arndt, A. Aulinger, J. Bieser, H.A.C. Denier van der Gon, R. Kranenburg, J. Kuenen, D. Neumann, G. Pouliot, M. Quante, Modeling emissions for three dimensional atmospheric chemistry transport models. J. Air Waste Manag. Assoc. 68(8), 763–800 (2018)CrossRefGoogle Scholar
  12. 12.
    L. Menut, A. Goussebaile, B. Bessagnet, D. Khvorostiyanov, A. Ung, Impact of realistic hourly emissions profiles on air pollutants concentrations modelled with CHIMERE. Atmos. Environ. 49, 233–244 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Mues et al., Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions. Atmos. Chem. Phys. 14(2), 939–955 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Ohara, H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, T. Hayasaka, An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys. 7(16), 4419–4444 (2007)CrossRefGoogle Scholar
  15. 15.
    J.G.J. Olivier, J.A.H.W. Peters, J. Bakker, J.J.M. Berdowski, A.J.H. Visschedijk, J.J. Bloos, EDGAR 3.2: Reference database with trend data of global greenhouse gas emissions for 1970–1995, in Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy Aspects (2002), pp. 291–292Google Scholar
  16. 16.
    S. Seum, J. Bieser, S. Ehrenberger, Ul. Kugler, German and European Ground-Transport Emissions in three different scenarios until 2040. Transport Research Arena, TRA 2018, 16–19. April 2018, Wien, Austria (2018)Google Scholar
  17. 17.
    C.A. Skjoth et al., Spatial and temporal variations in ammonia emissions—a freely accessible model code for Europe. Atmos. Chem. Phys. 11(11), 5221–5236 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Volker Matthias
    • 1
    Email author
  • Jan Arndt
    • 1
  • Armin Aulinger
    • 1
  • Johannes Bieser
    • 1
  • Markus Quante
    • 1
  1. 1.Helmholtz-Zentrum Geesthacht, Institute of Coastal ResearchGeesthachtGermany

Personalised recommendations