Advertisement

Influence of Stiffness of Rear Leaf Spring on Van Vibration Loading

  • Yu. A. PolyakovEmail author
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The influence of the stiffness of the rear leaf spring on the vibration loading of the van is estimated using a spatial model of its dynamic. The new model of spatial oscillations of the van with all-metal body taking into account the dynamics of the movement by road microprofile, nonlinearities of dynamic hysteresis characteristics of elements of the vibroprotective systems and tires, taking into account the deformation of frame and body, is built. The calculations were carried out when moving the van in two weight states: empty and full weight. For analysis of the vibration loading of the van, the spectrums of vertical accelerations at several points of the van construction were obtained. All calculations were performed in the “FRUND” programmatic system. Based on the calculation results, the rational stiffness parameters of the rear spring are proposed. The results obtained in the course of calculations were constructively realized by removing the fourth and sixth leaves from the standard leaf rear spring. This also led to a significant reduction in the weight of the rear leaf spring.

Keywords

Vibration loading Leaf spring Stiffness of the leaf spring 

References

  1. 1.
    Reimpel J, Stoll H, Betzler JW (2001) The automotive chassis: engineering principles; translated from the German by AGET Limited, 2nd edn. Elsevier Butterworth-Heinemann, OxfordGoogle Scholar
  2. 2.
    Parkhilovskiy IG (1978) Avtomobil’nye listovye ressory (Automotive leaf springs). Mashinostroenie, MoscowGoogle Scholar
  3. 3.
    Polyakov YuA (2010) Napravleniya sovershenstvovaniya sistem podressorivaniya avtomobiley (Directions of improvement of vehicle suspension systems). Avtotransportnoye predpriyatiye 6:53–55Google Scholar
  4. 4.
    Yatsenko NN (1972) Kolebaniya, prochnost i forsirovannye ispytaniya gruzovykh avtomobiley (Vibrations, strength and forced testing of trucks). Mashinostroenie, MoscowGoogle Scholar
  5. 5.
    Blundell M, Harty D (2015) The multibody systems approach to vehicle dynamics, 2nd edn. Elsevier Butterworth-Heinemann, OxfordGoogle Scholar
  6. 6.
    Gorobtsov AS, Kartsov SK, Pletnev AE, Polyakov YuA (2011) Kompyuternye metody postroeniya i issledovaniya matematicheskikh modeley dinamiki konstruktsiy avtomobiley (Computer methods of construction and research of mathematical models of dynamics of car structures). Mashinostroenie, MoscowGoogle Scholar
  7. 7.
    Gorobtsov AS, Kartsov SK, Polyakov YuA (2017) Estimation of the vibration loading vehicle with pneumohydraulic suspensions. In: IOP conference series: materials science and engineering, vol 177, p 012086.  https://doi.org/10.1088/1757-899x/177/1/012086CrossRefGoogle Scholar
  8. 8.
    Mitschke M, Wallentowitz H (2004) Dynamik der kraftfahrzeuge (Vehicle dynamics). Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  9. 9.
    Popp K, Schiehlen W (2010) Ground vehicle dynamics. Springer-Verlag, Berlin, HeidelbergCrossRefGoogle Scholar
  10. 10.
    Schramm D, Hiller M, Bardini R (2014) Vehicle dynamics: modeling and simulation. Springer-Verlag, Berlin, HeidelbergzbMATHGoogle Scholar
  11. 11.
    Shabana AA (2005) Dynamics of multibody systems. Cambridge University Press, New YorkCrossRefGoogle Scholar
  12. 12.
    Bathe KJ, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9:353–386CrossRefGoogle Scholar
  13. 13.
    Bauchau OA, Damilano G, Theron NJ (1995) Numerical integration of non-linear elastic multibody systems. Int J Numer Methods Eng 38(16):2727–2751.  https://doi.org/10.1002/nme.1620381605MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bauchau OA, Theron NJ (1996) Energy decaying scheme for nonlinear elastic multibody systems. Comput Struct 59(2):317–331.  https://doi.org/10.1016/0045-7949(95)00250-2CrossRefzbMATHGoogle Scholar
  15. 15.
    Bauchau OA, Xin H, Dong S, Li Z, Han S (2012) Intrinsic time integration procedures for rigid body dynamics. J Comput Nonlinear Dyn 8:011006.  https://doi.org/10.1115/1.4006252CrossRefGoogle Scholar
  16. 16.
    Baumgarte J (1972) Stabilization of constraints and integrals of motion in dynamical systems. Comput Methods Appl Mech Eng 1(1):1–16.  https://doi.org/10.1016/0045-7825(72)90018-7MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bayo E, Garcia de Jalon J, Serna MA (1988) A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput Methods Appl Mech Eng 71(2):183–195.  https://doi.org/10.1016/0045-7825(88)90085-0MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bayo E, Garcia de Jalon J, Avello A, Cuadrado J (1991) An efficient computational method for real time multibody dynamic simulation in fully cartesian coordinates. Comput Methods Appl Mech Eng 92:377–395.  https://doi.org/10.1016/0045-7825(91)90023-YCrossRefzbMATHGoogle Scholar
  19. 19.
    Bayo E, Ledesma R (1996) Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn 9:113–130.  https://doi.org/10.1007/BF01833296MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bayo E, Avello A (1994) Singularity free augmented Lagrangian algorithms for constraint multibody dynamics. Nonlinear Dyn 5:209–231.  https://doi.org/10.1007/BF00045677CrossRefGoogle Scholar
  21. 21.
    Blajer W (2001) A geometrical interpretation and uniform matrix formulation of multibody system dynamics. ZAMM J Appl Math Mech 81(4):247–259MathSciNetCrossRefGoogle Scholar
  22. 22.
    Brenan KE, Petzold LR (1989) The numerical solution of higher index differential-algebraic equations by implicit methods. SIAM J Numer Anal 26(4):976–996.  https://doi.org/10.1137/0726054MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gonzalez F, Dopico D, Pastorino R, Cuadrado J (2016) Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurations. Nonlinear Dyn 85(3):1491–1508MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lin ST, Hong MC (1998) Stabilization method for numerical integration of multibody mechanical systems. J Mech Des 120(4):565–572.  https://doi.org/10.1115/1.2829316CrossRefGoogle Scholar
  25. 25.
    Park KC, Chiou JC (1988) Stabilization of computational procedures for constrained dynamical systems. J Guidance Control Dyn 11(4):365–370.  https://doi.org/10.2514/3.20320MathSciNetCrossRefGoogle Scholar
  26. 26.
    Simo JC, Wong KK (1991) Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy. Int J Numer Method Eng 31(1):19–52.  https://doi.org/10.1002/nme.1620310103MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shabana AA, Hwang YL, Wehage RA (1992) Projection methods in flexible multibody dynamics. Part I: kinematics. Part II: dynamics and recursive projection methods. Int J Numer Methods Eng 35(10):1927–1966CrossRefGoogle Scholar
  28. 28.
    Sharp RS (1994) The application of multibody computer codes to road vehicle dynamics modeling problems. Proc Inst Mech Eng 208:55–61CrossRefGoogle Scholar
  29. 29.
    Schwerin R (1999) Multibody system simulations: numerical methods, algorithms and software. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  30. 30.
    Wasfy TM, Noor AK (1996) Modeling and sensitivity analysis of multibody systems using new solid, shell and beam elements. Comput Methods Appl Mech Eng 138:187–211.  https://doi.org/10.1016/S0045-7825(96)01113-9CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations