Advertisement

Vibration Isolation Properties of Vehicle Suspension at Optimal Instantaneous Damping Control in Oscillation Cycle

  • K. V. Chernyshov
  • A. V. PozdeevEmail author
  • I. M. Ryabov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The article is dedicated to the study of anti-vibration properties of vehicle suspension at optimal instantaneous damping control in oscillation cycle. These suspensions in foreign literature are called “semi-active control suspensions.” However, its vibration isolation properties have not been thoroughly analyzed. This article presents ineffective damper zones in the oscillation cycle, mathematical models of vehicle suspension, and the results of theoretical and experimental study of vibration isolation properties of one- and two-mass oscillation systems simulating a suspension at optimal instantaneous damping control in the oscillation cycle. The results in the form of amplitude-frequency characteristics of sprung and unsprung masses displacement and accelerations, waveforms of resonant oscillations and elastic-damping characteristics of oscillation systems at resonance proved that optimal instantaneous damping control does not improve vibration isolation properties in response to shocks and noise in the suspension, thus setting a problem of searching and studying the ways of a smooth damping change in the oscillation cycle.

Keywords

Vehicle suspension Vibration isolation Damping Optimal control 

References

  1. 1.
    Ryabov IM et al (1995) KPD amortizatora transportnogo sredstva pri rezonanse (Efficiency factor of vehicle damper at resonance). EHffektivnost’ ehkspluatacii transporta: Mezhvuzovskij nauchnyj sbornik, Saratov State Technical University, Saratov, pp 81–86Google Scholar
  2. 2.
    Ryabov IM et al (1997) Issledovanie ciklovogo sposoba regulirovaniya neuprugogo soprotivleniya podveski ATS (The study of cyclic control method of inelastic resistance of vehicle suspension). EHkspluataciya sovremennogo transporta: Mezhvuzovskij nauchnyj sbornik, Saratov State Technical University, Saratov, pp 96–102Google Scholar
  3. 3.
    Ryabov IM et al (1998) Raspredelenie ehnergii v cikle kolebanij podveski ATS (The distribution of energy in the oscillation cycle of vehicle suspension). Spravochnik. Inzhenernyj zhurnal 4:31–33Google Scholar
  4. 4.
    Ryabov IM et al (1998) Novyj sposob gasheniya kolebanij (A new way of oscillation damping). Motauto’98: Proceeding, Union of mechanical engineering and etc. Sofia 3:153–156Google Scholar
  5. 5.
    Ryabov IM, Chernyshov KV, Pozdeev AV (2016) Energy analysis of vehicle suspension oscillation cycle. Procedia Eng 150:384–392.  https://doi.org/10.1016/j.proeng.2016.06.730. In: Radionov AA (ed) 2nd international conference on industrial engineering (ICIE-2016), Elsevier PublishingCrossRefGoogle Scholar
  6. 6.
    Ryabov IM, Novikov VV, Pozdeev AV (2016) Efficiency of shock absorber in vehicle suspension. Procedia Eng 150:354–362.  https://doi.org/10.1016/j.proeng.2016.06.721. In: Radionov AA (ed) 2nd international conference on industrial engineering (ICIE-2016), Elsevier PublishingCrossRefGoogle Scholar
  7. 7.
    Furunzhiev RI (1965) Investigation of some questions of vehicle oscillation damping. Dissertation of Candidate of Technical Science, MinskGoogle Scholar
  8. 8.
    Crosby MJ, Karnopp DC (1973) The active damper—a new concept for shock and vibration control. 43rd shock and vibration bulletin, Part H, June 1973, pp 46–73Google Scholar
  9. 9.
    Karnopp DC, Crosby MJ, Harwood RA (1974) Vibration control using semi-active force generators. Trans ASME J Eng Ind 96:619–626CrossRefGoogle Scholar
  10. 10.
    Ryabov IM, Novikov VV (1999) Amortizator (Shock absorber), RUS Patent 2,142,585, Dec 1999Google Scholar
  11. 11.
    Ryabov IM, Novikov VV (1999) Amortizator (Shock absorber), RUS Patent 2,142,586, Dec 1999Google Scholar
  12. 12.
    Novikov VV, Ryabov IM (2004) Pnevmogidravlicheskie ressory podvesok avtotransportnyh sredstv (Hydropneumatic springs of motor vehicles suspensions). Volgograd State Technical University, Volgograd, 311 pGoogle Scholar
  13. 13.
    Chernyshov KV, Novikov VV, Ryabov IM (2006) Optimal’noe upravlenie dempfirovaniem podveski na osnove principa maksimuma (Optimal control of suspension damping on the basis of maximum principle). Traktory i sel’hozmashiny 2:13–15Google Scholar
  14. 14.
    Novikov VV, Ryabov IM, Chernyshov KV (2009) Vibrozashchitnye svojstva podvesok avtotransportnyh sredstv (The vibration isolation properties of the motor vehicles suspensions). Volgograd State Technical University, Volgograd, 338 pGoogle Scholar
  15. 15.
    Diakov AS, Pozdeev AV, Pokhlebin AV (2011) Optimal’noe upravlenie zhyostkost’yu i dempfirovaniem podveski ATS na osnove principa maksimuma L.S. Pontryagina (Optimal damping and stiffness control of vehicle suspension based on the maximum principle of L.S. Pontriagin). Vestnik Akademii voennyh nauk 2(special edition):132–139Google Scholar
  16. 16.
    Pozdeev AV et al (2011) Sintez algoritmov optimal’nogo upravleniya dempfirovaniem i zhyostkost’yu podveski ATS (Design of algorithms for the optimal control of damping and stiffness of vehicle suspension). Gruzovik 6:2–6Google Scholar
  17. 17.
    Dyakov AS et al (2011) Pnevmogidravlicheskaya ressora bystrohodnoj gusenichnoj mashiny (Hydropneumatic spring of high-speed tracked vehicle). Vestnik Akademii voennyh nauk 2(special issue):125–132Google Scholar
  18. 18.
    Pozdeev AV et al (2013) Reguliruemye pnevmaticheskie i pnevmogidravlicheskie ressory podvesok avtotransportnyh sredstv (Controlled air and air-hydraulic springs of vehicle suspensions). Volgograd State Technical University, Volgograd, 244 pGoogle Scholar
  19. 19.
    Chernyshov KV, Khripkov MY (2016) Obzor osnovnyh algoritmov regulirovaniya dempfirovaniya v podveske avtomobilya (Overview of damping control algorithms in vehicle suspension) Simvol nauki 4–3:140–144Google Scholar
  20. 20.
    Novikov VV et al (2013) Stendy dlya ispytaniya podvesok nazemnyh transportnyh sredstv (Rigs for testing of suspensions of land vehicles). Volgograd State Technical University, Volgograd, 114 pGoogle Scholar
  21. 21.
    Novikov VV, Pozdeev AV, Diyakov AS (2015) Research and testing complex for analysis of vehicle suspension units. Procedia Eng 129:465–470.  https://doi.org/10.1016/j.proeng.2015.12.153. In: Radionov AA (ed) International conference on industrial engineering (ICIE-2015), Elsevier PublishingCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • K. V. Chernyshov
    • 1
  • A. V. Pozdeev
    • 1
    Email author
  • I. M. Ryabov
    • 1
  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations