Advertisement

Features of Rotor Friction Losses Balancing in Centrifugal Electric-Driven Pumps for Spacecrafts

  • A. BobkovEmail author
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Centrifugal electric-driven pumps with the capacity less than 300 W provide circulation of heat transfer fluid within closed loops of a spacecraft thermal regulation system. Taking into account the geometrical arrangement feature of the rotor pump and drive sections of electric-driven pumps, which implies that radial dimensions of these parts are comparable, it is concluded that analyzing rotor friction losses, two types of losses shall be considered separately: friction against butt-end surfaces and friction against cylindrical surfaces of the rotor. In this case, the first type prevails in the rotor pump section, and the second type is primary for the rotor drive section. Calculations show that the rotor pump section makes the largest contribution to rotor friction losses. The main reason is large size butt-end surfaces of the pump section impeller. The paper represents potential friction reduction in the rotor pump section due to increase in the number of electric-driven pump stages and decrease in diameter of each stage impeller.

Keywords

Spacecraft Electric-driven pump Rotor Friction Butt-end surface Cylindrical surface 

References

  1. 1.
  2. 2.
    NASA Astronauts went to space for the third time to repair the pump. https://ria.ru/science/20100816/265764991.html. Accessed 21 Nov 2016
  3. 3.
    Borovin GK, Petrov AI, Protopopov AA, Isaev NY (2016) Dinamika rotorov maloraskhodnykh tsentrobezhnykh nasosov s gidrostaticheskimi podshipnikami i privodom ot elektrodvigateley postoyannogo toka (Dynamics of rotors of low flow centrifugal pumps with hydrostatic bearings and driven by direct current electric motors).  https://doi.org/10.20948/prepr_2016_142
  4. 4.
    Kuzmin VN, Mikhaylov EM, Stoma SA (1996) Elektronasosnyye agregaty kosmicheskikh apparatov s gidrooporami rotora (Electric power units of space vehicles with rotor hydro bearings), vol 5. Elektrotekhnika, MoscowGoogle Scholar
  5. 5.
    Kraev MV, Lukin VA, Ovsyannikov BV (1985) Maloraskhodnyye nasosy aviatsionnykh i kosmicheskikh sistem (Low-flowrate pumps of aviation and space systems). Mashinostroyeniye, MoscowGoogle Scholar
  6. 6.
    Yudina ZA, Maslovskaya AM, Usmanov DB (2016) Modifikatsiya elektronasosnogo agregata kosmicheskogo apparata (Modification of the electric pump unit of space apparatus). Aktual’nyye problemy aviatsii i kosmonavtiki 1(12):139–141Google Scholar
  7. 7.
    Laser DJ, Santiago JGA (2004) Review of micropumps. J Micromech Microeng 14(6):35–64CrossRefGoogle Scholar
  8. 8.
    Weinberg DM, Vereshchagin VP, Miroshnik OM (2001) Unikal’nyye elektromekhanicheskiye bortovyye sistemy orbital’noy kosmicheskoy stantsii “Mir” (Unique electromechanical on-board systems of the Mir space station). Nauka, MoscowGoogle Scholar
  9. 9.
    Burenin VB, Gaevik DV, Dronov VP (1977) Konstruktsiya i ekspluatatsiya tsentrobezhnykh germetichnykh nasosov (Design and operation of centrifugal hermetic pumps). Mashinostroyeniye, MoscowGoogle Scholar
  10. 10.
    Baibikov AS, Karakhanian VK (1982) Gidrodinamika vspomogatel’nykh traktov lopastnykh mashin (Hydrodynamics of auxiliary tracts of vane machines). Mashinostroyeniye, MoscowGoogle Scholar
  11. 11.
    Klimova KG, Zagayko SA (2018) Matematicheskaya model’ rascheta poter’ moshchnosti na treniye podshipnikov skol’zheniya (Mathematical model of calculation of the losses of friction for the friction of slide bearings) vol 2/19, Molodezhnyy vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, UfaGoogle Scholar
  12. 12.
    Martsinkovsky VA (1970) Gidrodinamika i prochnost’ tsentrobezhnykh nasosov (Hydrodynamics and Strength of Centrifugal Pumps). Mashinostroyeniye, MoscowGoogle Scholar
  13. 13.
    Ovsyannikov BV, Borovsky BI (1986) Teoriya i raschot agregatov pitaniya zhidkostnykh raketnykh dvigateley (Theory and calculation of power units of liquid rocket engines). Mashinostroyeniye, MoscowGoogle Scholar
  14. 14.
    Vysokooborotnyye lopatochnyye nasosy (High-speed vane-type pumps) (1975). In: Ovsyannikov BV, Chebaevsky VF (eds) Mashinostroyeniye, MoscowGoogle Scholar
  15. 15.
    Verbitska OA (1957) Raspredeleniye davleniy v bokovykh pazukhakh tsentrobezhnykh nasosov s uchetom utechek (Pressure distribution in lateral sinuses of centrifugal pumps taking into account leakages). VINITI, MoscowGoogle Scholar
  16. 16.
    Bobkov AV (2003) Tsentrobezhnyye nasosy sistem termoregulirovaniya kosmicheskikh apparatov (Spacecraft thermal regulation systems centrifugal pumps). Dalnauka, VladivostokGoogle Scholar
  17. 17.
    Laboratory course of hydraulics, pumps and hydraulic transmissions (1974). In: Rudnev SS, Podviz LG (eds) Mashinostroenie, MoscowGoogle Scholar
  18. 18.
    Borovsky BI (1989) Energeticheskiye parametry i kharakteristiki vysokooborotnykh lopastnykh nasosov (Energy parameters and characteristics of high-speed vane-type pumps). Mashinostroenie, MoscowGoogle Scholar
  19. 19.
    Pamrin (1973) Aerodynamics of small-sized compressors and fans. papers of American society for mechanical engineers. Power Mach Plants 3:125–132Google Scholar
  20. 20.
    Barenboym AB (1974) Maloraskhodnyye freonovyye turbokompressory (Low cost freon turbochargers). Mashinostroenie, MoscowGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Komsomolsk-na-Amure State UniversityKomsomolsk-na-AmureRussia

Personalised recommendations