Advertisement

Quantitative Assessment of Thermal Properties of the Metal-Cutting Machine Design

  • B. M. DmitrievEmail author
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

As machine manufacturing develops, the requirements for productivity and accuracy of parts produced on machines become more and more stringent, which, in turn, increases heat generation and adversely affects these parameters. This results in a contradiction between the requirement for machine manufacturing development and machine tool industry capabilities. Basically, it proves impossible to eliminate the contradiction; however, it is possible to reduce the level of confrontation through the creation of a rational design. During design and operation of the machine tool, there is a regular need to evaluate the thermal state of the machine tool. The existing knowledge system uses a qualitative evaluation of the machine thermal state, i.e., “better/worse.” The method has neither a start point nor the measurement unit and, as a consequence, forms a rough estimate of the condition. If there is a need to provide a required level of thermal design state when debugging a test sample at the stage of design development, a method is required that ensures design quantification. This research paper describes a method for evaluating the thermal properties of a structure in quantitative terms. A method based on the developed package of measures consisting of a unit of measurement, standard of this unit, scale of quantitative values, etc. The scope of application of this method is governed by the tasks to conduct a quantitative assessment of thermal properties throughout the life cycle of the machine tool design.

Keywords

Machine tool Thermal scale Thermal unit Standard unit Thermal test Property value Operation 

Notes

Acknowledgements

The author would like to express his gratitude to Professor N. N. Zubkov for his efforts to edit this article and introduce some useful comments.

References

  1. 1.
    Kinkel S, Lay G (2006) Technologietrends in der Produktion: Praxis der Anlagenmodernisierung in der deutschen Metall- und Elektroindustrie. Mitteilungen aus der ProduktionsinnovationserhebungGoogle Scholar
  2. 2.
    Grossmann K (2014) Thermo-energetic design of machine tools: a systemic approach to solve the conflict between power efficiency. Accuracy and productivity demonstrated at the example of machining production. Springer, ChamGoogle Scholar
  3. 3.
    Zubkov NN, Ovchinnikov AI (2016) Vasil’ev S.G. Tool–workpiece interaction in deformational cutting. Russ Eng Res 36(3):209–212CrossRefGoogle Scholar
  4. 4.
    Yagopolskiy AG, Vinikov DA (2017) Sravnitelnyy analiz i obobshcheniye sposobov korrektsii temperaturnykh deform.atsiy v metallorezhushchikh stankakh (Comparative analysis and synthesis of methods for the correction of temperature deformations in machine tools). Izvestiya Vuzov. Mashinostroyeniye 68291:16–18Google Scholar
  5. 5.
    Kuznetsov AP (2017) Evolution of methods of assessing the accuracy of metal-cutting machines. Russ Eng Res 37(3):171–179CrossRefGoogle Scholar
  6. 6.
    Yash R, Bhoyar PD Kamble (2013) Finite element analysis on temperature distribution in turning process using deform-3D. Int J Res Eng TechnolGoogle Scholar
  7. 7.
    Mekid S (2009) Introduction to precision machine design and error assessment. CRC PressGoogle Scholar
  8. 8.
    Schneider D, Lauer M, Voigt I, Drossel W (2016) Development and examination of switchable heat pipes. Appl Therm Eng 99:857–865.  https://doi.org/10.1016/j.applthermaleng.2016.01.086CrossRefGoogle Scholar
  9. 9.
    Putz C, Richter J, Regel (2018) Industrial consideration of thermal issues in machine tools. German Academic Society for Production Engineering (WGP)Google Scholar
  10. 10.
    Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C (2012) Thermal issues in machine tools. Wu rz, K. Wegener. CIRP Ann—Manuf Technol 61:771–793CrossRefGoogle Scholar
  11. 11.
    Dmitriyev BM (2017) Sposob ispytaniya metallorezhushchego stanka po parametram tochnosti pri deystvii termicheskikh protsessov (Method of testing metal cutting machine for accuracy parameters during thermal processes). Tekhnologiya Mashinostroyeniya 4:15–19Google Scholar
  12. 12.
    Clough DA, Fletcher S, Longstaff AP, Willoughby P (2012) Thermal analysis for condition monitoring of machine tool spindles. J Phys Conf Ser 364. http://eprints.hud.ac.uk/14160
  13. 13.
    Fletcher S, Longstaff AP, Myers A (2007) Measurement methods for efficient thermal assessment and error-compensation. In: Proceedings of the topical meeting: thermal effects inprecision systems, MaastrichtGoogle Scholar
  14. 14.
    International standard ISO 230-3 Second edition 2007-08-15 Test code for machine tools. Part 3: Determination of thermal effects Code d’essai des machines-outils—Partie 3: Évaluation des effets thermiquesGoogle Scholar
  15. 15.
    Dmitriev BM (2018) Assessing the thermal rigidity of a metal-cutting machine. Russ Eng Res 38(2):94–97.  https://doi.org/10.3103/S1068798X18020065CrossRefGoogle Scholar
  16. 16.
    Kinkel S (2005) Anforderungen an die Fertigungstechnik von morgen: Wie erändern sich Variantenzahlen, Losgrößen, Materialeinsatz, Genauigkeitsanforderungen und Produktlebenszyklen tatsächlich Mitteilungen aus der ProduktionsinnovationserhebungGoogle Scholar
  17. 17.
    Ramesh R (2000) Error compensationin machine tools—a review: Part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284CrossRefGoogle Scholar
  18. 18.
    Lipson H (1968) The great experimenys in physies. Oliver & Boyd, EdinburgGoogle Scholar
  19. 19.
    Dolgova IV, Kavtarev AR, Ryabykh GR (2016). Importnoye stankostroyeniye kak oriyentir dlya razvitiya otechestvennoy otrasli (Import machine tool industry as a guideline for the development of the domestic industry), vol 6. Gumanitarnyy vestnik (MGTU im. N.E.Baumana): elektronnyy zhurnal, p 8. http://hmbul.ru/catalog/ecoleg/econom/367.html  https://doi.org/10.18698/2306-8477-2016-6-367
  20. 20.
    Dornfeld D, Lee D-E (2008) Precision manufacturing. Springer Science + Business Media, LC, p 775CrossRefGoogle Scholar
  21. 21.
    Perri GM, Bräunig M, Gironimo GD, Tarallo A, Wittstock V, Putz M (2016) Numerical modeling and analysis of the influence of an aircooling system on a milling machine in virtual environment. Int J Adv Manuf Technol 86(5–8):1853–1864.  https://doi.org/10.1007/s00170-015-8322-5CrossRefGoogle Scholar
  22. 22.
    Popov IA, Shchelchkov AV, Gortyshov YuF, Zubkov NN (2017) Heat transfer enhancement and critical heat fluxes in boiling of microfinned surfaces. High Temp 55(4):524–534.  https://doi.org/10.1134/S0018151X17030208CrossRefGoogle Scholar
  23. 23.
    Shouchen T, Utenkov VM, Molchanov AA (2017) Optimizatsiya komponovok stankov aosnove rascheta epyury davleniya na napravlyayushchikh (Optimization of the layout of machine tools based on the calculation of the pressure profile on the guides). Izvestiya Vuzov. Mashinostroyeniye 9(6901)(9):6–8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations