Advertisement

Analyzing Cognitive Flexibility in Older Adults Through Playing with Robotic Cubes

  • Margarida RomeroEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11593)

Abstract

Cognitive flexibility is an important ability to adapt to changing situations. We consider the evolution of technologies in the digital era as a changing situation requiring the individuals to maintain a certain cognitive flexibility. Across the lifespan, cognitive flexibility is an essential ability to adapt to a continuous evolution of human-computer interactions (HCI). In this study, we observe older adults in a playful robotic task aiming to observe their cognitive flexibility in order to consider if older adults shows an adequate level of cognitive flexibility to solve a problem solving task with unknown robotic cubes. The playful robotic task engages the participants individually in problem solving a puzzle-based challenge with modular robotics.

Keywords

Cognitive flexibility Robotics Lifelong learning Human-computer interactions Problem solving 

Notes

Acknowledgments

This work benefited from the support of the project ANR CréaMaker of the French National Research Agency (ANR).

References

  1. 1.
    Ahmad, B., Richardson, I., Beecham, S.: A systematic literature review of social network systems for older adults. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 482–496. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69926-4_38CrossRefGoogle Scholar
  2. 2.
    Wagner, S.P.: Robotics and children: science achievement and problem solving. J. Comput. Child. Educ. 9, 149 (1998)Google Scholar
  3. 3.
    Pelikan, H.R., Broth, M.: Why that Nao?: How humans adapt to a conventional humanoid robot in taking turns-at-talk. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 4921–4932. ACM (2016)Google Scholar
  4. 4.
    Correll, N., Wailes, C., Slaby, S.: A one-hour curriculum to engage middle school students in robotics and computer science using cubelets. In: Ani Hsieh, M., Chirikjian, G. (eds.) Distributed Autonomous Robotic Systems. STAR, vol. 104, pp. 165–176. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55146-8_12CrossRefGoogle Scholar
  5. 5.
    Matarić, M.J., Arkin, R.C.: The Robotics Primer. MIT Press, Cambridge (2007)Google Scholar
  6. 6.
    Munich, M.E., Ostrowski, J., Pirjanian, P.: ERSP: a software platform and architecture for the service robotics industry. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2005), pp. 460–467. IEEE (2005)Google Scholar
  7. 7.
    DiSalvo, C.F., Gemperle, F., Forlizzi, J., Kiesler, S.: All robots are not created equal: the design and perception of humanoid robot heads. In: Proceedings of the 4th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 321–326. ACM (2002)Google Scholar
  8. 8.
    Lapeyre, M., et al.: Poppy: open source 3D printed robot for experiments in developmental robotics. In: ICDL-EPIROB, pp. 173–174 (2014)Google Scholar
  9. 9.
    Noirpoudre, S., et al.: Poppy education: un dispositif robotique open source pour l’enseignement de l’informatique et de la robotique. In: Environnements Informatiques pour l’Apprentissage Humain, EIAH 2017, p. 8 (2017)Google Scholar
  10. 10.
    Romero, M., David, D., Lille, B.: CreaCube, a playful activity with modular robotics. In: Games and Learning Alliance, Palermo, IT (2011)Google Scholar
  11. 11.
    Yanco, H.A., Drury, J.L.: A taxonomy for human-robot interaction. In: Proceedings of the AAAI Fall Symposium on Human-Robot Interaction, pp. 111–119 (2002)Google Scholar
  12. 12.
    Yanco, H.A., Drury, J.: Classifying human-robot interaction: an updated taxonomy. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, pp. 2841–2846. IEEE (2004)Google Scholar
  13. 13.
    Wu, Y.-H., Fassert, C., Rigaud, A.-S.: Designing robots for the elderly: appearance issue and beyond. Arch. Gerontol. Geriatr. 54, 121–126 (2012)CrossRefGoogle Scholar
  14. 14.
    Broekens, J., Heerink, M., Rosendal, H., et al.: Assistive social robots in elderly care: a review. Gerontechnology 8, 94–103 (2009)CrossRefGoogle Scholar
  15. 15.
    Kidd, C.D., Taggart, W., Turkle, S.: A sociable robot to encourage social interaction among the elderly. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 3972–3976. IEEE (2006)Google Scholar
  16. 16.
    Tamura, T., et al.: Is an entertainment robot useful in the care of elderly people with severe dementia? J. Gerontol. A Biol. Sci. Med. Sci. 59, M83–M85 (2004)CrossRefGoogle Scholar
  17. 17.
    Banks, M.R., Willoughby, L.M., Banks, W.A.: Animal-assisted therapy and loneliness in nursing homes: use of robotic versus living dogs. J. Am. Med. Dir. Assoc. 9, 173–177 (2008)CrossRefGoogle Scholar
  18. 18.
    Al-Halhouli, A., Qitouqa, H., Malkosh, N., Shubbak, A., Al-Gharabli, S., Hamad, E.: LEGO mindstorms NXT for elderly and visually impaired people in need: a platform. Technol. Health Care 24, 579–585 (2016)CrossRefGoogle Scholar
  19. 19.
    Cruz-Martín, A., Fernández-Madrigal, J.A., Galindo, C., González-Jiménez, J., Stockmans-Daou, C., Blanco-Claraco, J.L.: A LEGO mindstorms NXT approach for teaching at data acquisition, control systems engineering and real-time systems undergraduate courses. Comput. Educ. 59, 974–988 (2012)CrossRefGoogle Scholar
  20. 20.
    Romero, M., DeBlois, L., Pavel, A.: Créacube, comparaison de la résolution créative de problèmes, chez des enfants et des adultes, par le biais d’une tâche de robotique modulaire. MathémaTICE (2018)Google Scholar
  21. 21.
    Canas, J., Quesada, J., Antolí, A., Fajardo, I.: Cognitive flexibility and adaptability to environmental changes in dynamic complex problem-solving tasks. Ergonomics 46, 482–501 (2003)CrossRefGoogle Scholar
  22. 22.
    Romero, M., Loos, E.: Playing with robotic cubes: age matters. In: Britesa, M.J., Amaral, I., Patrício, R., Pereira, L. (eds.) Intergenerationality in a Digital World: Proposals of Activities, pp. 55–56. Edições Universitárias Lusófonas (2018)Google Scholar
  23. 23.
    Scott, W.A.: Cognitive complexity and cognitive flexibility. Sociometry, 405–414 (1962)CrossRefGoogle Scholar
  24. 24.
    Krems, J.F.: Cognitive flexibility and complex problem solving. Complex Probl. Solving Eur. Perspect., 201–218 (1995)Google Scholar
  25. 25.
    D’zurilla, T.J., Goldfried, M.R.: Problem solving and behavior modification. J. Abnorm. Psychol. 78, 107 (1971)CrossRefGoogle Scholar
  26. 26.
    Davidson, M.C., Amso, D., Anderson, L.C., Diamond, A.: Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 44, 2037–2078 (2006)CrossRefGoogle Scholar
  27. 27.
    Dennis, J.R.: Computer classification of triangles and quadrilaterals–a challenging application. Ill. Ser. Educ. Appl. Comput. 19 (1976)Google Scholar
  28. 28.
    Johnco, C., Wuthrich, V., Rapee, R.: The role of cognitive flexibility in cognitive restructuring skill acquisition among older adults. J. Anxiety Disord. 27, 576–584 (2013)CrossRefGoogle Scholar
  29. 29.
    Berry, A.S., et al.: Aging affects dopaminergic neural mechanisms of cognitive flexibility. J. Neurosci. (2016). 0626–16Google Scholar
  30. 30.
    Dörner, D.: The Logic of Failure: Recognizing and Avoiding Error in Complex Situations. Addison-Wesley Pub, Reading (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire d’Innovation et Numérique pour l‘ÉducationUniversité Côte d’AzurNiceFrance

Personalised recommendations