Advertisement

Development of Excited Region of the Track. Rise and Decay Kinetics of Scintillation

  • Mikhail Korzhik
  • Gintautas Tamulaitis
  • Andrey N. Vasil’ev
Chapter
  • 28 Downloads
Part of the Particle Acceleration and Detection book series (PARTICLE)

Abstract

In this chapter, we discuss the concept of the electronic excitations created by ionizing particles in solids, their transformation, interaction, and temporal evolution. This evolution is analyzed for different types of scintillators: self-activated, cross-luminescent and crystals with activators. The formation of excited region in the track of an ionizing particle is especially addressed. The rise and decay kinetics of scintillation is analyzed in terms of the spatial distribution of electronic excitations in crystals with different scintillation origin.

References

  1. 1.
    A. Khrutchinsky, M. Korzhik, P. Lecoq, A phenomenon of scintillation in solids. Nucl. Instrum. Methods Phys. Res. Sect. A 486, 381–384 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    E.R. Ilmas, G.G. Liidja, Ch.B. Lushchik, Photon multiplication in crystals. I. Luminescence excitation spectra of ionic crystals in region 4 to 21 eV. Opt. Spectrosc. (USSR) 18, 255 (1965); Photon multiplication in crystals. 2. Mechanism of photon multiplication. Opt. Spectrosc. (USSR) 18, 359 (1965)Google Scholar
  3. 3.
    A.N. Vasil’ev, V.N. Kolobanov, I.L. Kuusman, C.B. Lushchik, V.V. Mikhailin, Multiplication of electronic excitations in MgO crystals. Fizika Tverdogo Tela 27, 2696–2702 (1985)Google Scholar
  4. 4.
    M. Kirm, E. Feldbach, T. Kärner, A. Lushchik, C. Lushchik, A. Maaroos, V. Nagirnyi, I. Martinson, Multiplication of electron–hole pairs in MgO crystals and ceramics. Nucl. Instrum. Methods Phys. Res. Sect. B 141, 431–435 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Y.L. Klimontovich, The Kinetic Theory of Electromagnetic Processes (Springer, Berlin/Heidelberg/New York, 1983).Google Scholar
  6. 6.
    A.N. Vasil’ev, V.V. Mikhailin, Introduction to Solid State Spectroscopy, Part 1 (KDU publishing house, Moscow, 2008)., in Russian)Google Scholar
  7. 7.
    A.N. Vasil’ev, Microtheory of scintillation in crystalline materials, in Engineering of Scintillation Materials and Radiation Technologies, ed. by A. Gektin and M. Korzhik (Springer, Cham, 2017), pp. 3–34Google Scholar
  8. 8.
    A.N. Vasil’ev, Polarization approximation for electron cascade in insulators after high-energy excitation. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms. 107, 165–171 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited. Rev. Mod. Phys. 43, 297–347 (1971)ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    A.N. Vasil’ev, Y. Fang, V.V. Mikhailin, Impact production of secondary electronic excitations in insulators: Multiple-parabolic-branch band model. Phys. Rev. B 60, 5340–5347 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    D.I. Vaisburd, K.E. Evdokimov, Creation of excitations and defects in insulating materials by high-current-density electron beams of nanosecond pulse duration. Phys. Status Solidi C 2, 216–222 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    R. Kirkin, V.V. Mikhailin, A.N. Vasil’ev, Recombination of correlated elec-tron-hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci. 59, 2057–2064 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Wang, Y. Xie, B.D. Cannon, L.W. Campbell, F. Gao, S. Kerisit, Computer simulation of electron thermalization in CsI and CsI(Tl). J. Appl. Phys. 110, 064903 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Wang, Y. Xie, L.W. Campbell, F. Gao, S. Kerisit, Monte Carlo simula-tions of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators. J. Appl. Phys. 112, 014906 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    D. Vaisburd, O. Koroleva, S. Kharitonova, Instantaneous spectrum of passively ionized electrons in a dielectric irradiated by a high-power electron beam. Russ. Phys. J. 39(11), 1114–1121 (1996)CrossRefGoogle Scholar
  17. 17.
    R.G. Deich, M. Karklina, L. Nagli, Intraband luminescence of CsI crystal. Solid State Commun. 71(10), 859–862 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    S.I. Omelkov, V. Nagirnyi, A.N. Vasil'ev, M. Kirm, New features of hot intraband luminescence for fast timing. J. Lumin. 176, 309–317 (2016)CrossRefGoogle Scholar
  19. 19.
    A.N. Vasil’ev, Relaxation of hot electronic excitations in scintillators: account for scattering, track effects, complicated electronic structure, in Proceedings of The Fifth International Conference on Inorganic Scintillators and Their Applications, (Faculty of Physics, Moscow State University, Moscow, 2000), pp. 43–52Google Scholar
  20. 20.
    A. Gektin, A. Vasil’ev, Scintillation, phonon and defect channel balance; the sources for fundamental yield increase. Funct. Mater. 23, 183–190 (2016)CrossRefGoogle Scholar
  21. 21.
    A.N. Belsky, R.A. Glukhov, P. Martin, V.V. Mikhailin, C. Pedrini, A.N. Vasil’ev, VUV excitation of intrinsic luminescence of ionic crystals with complicated band structure. Simulation. J. Lumin. 72–74, 96–97 (1997)Google Scholar
  22. 22.
    A.N. Belsky, I.A. Kamenskikh, V.V. Mikhailin, C. Pedrini, A.N. Vasil'ev, Energy transfer in inorganic scintillators. Radiat. Eff. Defects Solids 150, 1–10 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    A.N. Vasil’ev, Final stages of inelastic electron scattering in insulators. Mater. Sci. Forum 239–241, 235–240 (1997)CrossRefGoogle Scholar
  24. 24.
    A.N. Belsky, R.A. Glukhov, I.A. Kamenskikh, P. Martin, V.V. Mikhailin, I.H. Munro, C. Pedrini, D.A. Shaw, I.N. Shpinkov, A.N. Vasilev, Luminescence quenching as a probe for the local density of electronic excitations in insulators. J. Electron Spectrosc. Relat. Phenom. 79, 147–150 (1996)CrossRefGoogle Scholar
  25. 25.
    M.A. Terekhin, A.N. Vasil'ev, M. Kamada, E. Nakamura, S. Kubota, Effect of quenching processes on decay of fast luminescence from barium fluoride excited by VUV synchrotron radiation. Phys. Rev. B 52, 3117–3121 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    R.A. Glukhov, M. Kamada, S. Kubota, E. Nakamura, S. Ohara, M.A. Terekhin, A.N. Vasil’ev, Effect of quenching processes on decay of fast luminescence from BaF2, in Proceedings, International Conference on Inorganic Scintillators and Their Applications SCINT95, (Delft University Press, Delft, 1996), pp. 204–207Google Scholar
  27. 27.
    R.A. Glukhov, A.N. Vasil'ev, C. Pedrini, A. Yakunin, Track effects in crossluminescence, in Proceedings of the Fifth International Conference on Inorganic Scintillators and Their Applications, (Faculty of Physics, Moscow State University, Moscow, 2000), pp. 448–453Google Scholar
  28. 28.
    I.A. Markov, A.N. Vasil’ev, V.V. Veselova, Computer simulation of physical processes in scintillators, in Proceedings of the 8th International Conference on Inorganic Scintillators and Their Use in Scientific and Industrial Applications, (Alushta, Kharkov, 2005), pp. 7–10Google Scholar
  29. 29.
    A.N. Vasil’ev, V.V. Mikhailin, The role of relaxation through phonon emission in cascade process of multiplication of electronic excitations generated by X-ray quantum. Bull. Acad. Sci. USSR Phys. Ser. 50, 113–116 (1986)Google Scholar
  30. 30.
    A.N. Vasil’ev, A.V. Gektin, Multiscale approach to estimation of scintillation characteristics. IEEE Trans. Nucl. Sci. 61, 235–245 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Z. Wang, Y. Xie, B.D. Cannon, L.W. Campbell, F. Gao, S. Kerisit, Computer simulation of electron thermalization in CsI and CsI(Tl). J. Appl. Phys. 110, 064903 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    F. Gao, Y. Xie, S. Kerisit, L.W. Campbell, W.J. Weber, Yield, variance and spatial distribution of electron–hole pairs in CsI. Nucl. Inst. Methods Phys. Res. A 652, 564–567 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Z. Wang, Y. Xie, L.W. Campbell, F. Gao, S. Kerisit, Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators. J. Appl. Phys. 112, 014906 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A.N. Vasil’ev, From luminescence non-linearity to scintillation nonproportionality. IEEE Trans. Nucl. Sci. 55, 1054–1061 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    S. Gridin, A. Belsky, C. Dujardin, A. Gektin, N. Shiran, A. Vasil'ev, Kinetic model of energy relaxation in CsI:A (A=Tl and In) scintillators. J. Phys. Chem. C 119, 20578–20590 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Gridin, A.N. Vasil'ev, A. Belsky, N. Shiran, A. Gektin, Excitonic and activator recombination channels in binary halide scintillation crystals. Phys. Status Solidi B 251, 942–949 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    X. Lu, Q. Li, G.A. Bizarri, K. Yang, M.R. Mayhugh, P.R. Menge, R.T. Williams, Coupled rate and transport equations modeling proportionality of light yield in high-energy electron tracks: CsI at 295 K and 100 K; CsI: Tl at 295 K. Phys. Rev. B 92, 115207 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    R.T. Williams, K.B. Ucer, J.Q. Grim, K.C. Lipke, L.M. Trefilova, W.W. Moses, Picosecond studies of transient absorption induced by bandgap excitation of CsI and CsI:Tl at room temperature. IEEE Trans. Nucl. Sci. 57, 1187–1192 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    T.R. Waite, Theoretical treatment of the kinetics of diffusion-limited reactions. Phys. Rev. 107, 463–470 (1957)ADSCrossRefGoogle Scholar
  40. 40.
    T.R. Waite, General theory of bimolecular reaction rates in solids and liquids. J. Chem. Phys. 28, 463–470 (1958)CrossRefGoogle Scholar
  41. 41.
    V.N. Kuzovkov, E.A. Kotomin, Kinetics of bimolecular reactions in condensed media. Rep. Prog. Phys. 51, 1479–1524 (1988)ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    A.N. Vasil’ev, V.V. Mihailin, I.V. Ovchinnikova, Influence of electron-hole correlations on luminescence of crystalline phosphors with traps. Moscow Univ. Bulletin. Phys. Astron. 28, 50–54 (1987). (in Russian)Google Scholar
  43. 43.
    R.T. Williams, J.Q. Grim, Q. Li, K.B. Ucer, W.W. Moses, Excitation density, diffusion-drift, and proportionality in scintillators. Phys. Status Solidi B 248, 426–438 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Q. Li, J.Q. Grim, K.B. Ucer, A. Burger, G.A. Bizarri, W.W. Moses, R.T. Williams, Host structure dependence of light yield and proportionality in scintillators in terms of hot and thermalized carrier transport. Phys. Status Solidi (RRL) 6, 346–348 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    X. Lu, Q. Li, G.A. Bizarri, K. Yang, M.R. Mayhugh, P.R. Menge, R.T. Williams, Coupled rate and transport equations modeling proportionality of light yield in high-energy electron tracks: CsI at 295 K and 100 K; CsI: Tl at 295 K. Phys. Rev. B 92, 115207 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, An analytical model of nonproportional scintillator light yield in terms of recombination rates. J. Appl. Phys. 105, 044507 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    A. Belsky, K. Ivanovskikh, A. Vasil’ev, M.F. Joubert, C. Dujardin, Estimation of the electron thermalization length in ionic materials. J. Phys. Chem. Lett. 4, 3534–3538 (2013)CrossRefGoogle Scholar
  48. 48.
    V.M. Agranovich, M.D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland Pub Co, Amsterdam/New York, 1983), p. 371Google Scholar
  49. 49.
    J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon, New York, 1967).Google Scholar
  50. 50.
    M. Kirm, V. Nagirnyi, E. Feldbach, M. De_Grazia, B. Carre, H. Merdji, S. Guizard, G. Geoffroy, J. Gaudin, N. Fedorov, P. Martin, A. Vasil’ev, A. Belsky, Exciton-exciton interactions in cdwo4 irradiated by intense femtosecond vacuum ultraviolet pulses. Phys. Rev. B 79, 233103 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    S. Chernov, R. Deych, L. Grigorjeva, D. Millers, Luminescence and Transient Optical Absorption in CdWO. Mater. Sci. Forum 239-241, 299–302 (1997)CrossRefGoogle Scholar
  52. 52.
    M. Yokota, O. Tanimoto, Effects of diffusion on energy transfer by resonance. J. Phys. Soc. Jpn. 22, 779–784 (1967)ADSCrossRefGoogle Scholar
  53. 53.
    M.J. Weber, Multiphonon relaxation of rare-earth ions in yttrium Orthoaluminate. Phys. Rev. B 8, 54–64 (1973)ADSCrossRefGoogle Scholar
  54. 54.
    Z. Onderisinova, M. Kucera, M. Hanus, M. Nikl, Temperature-dependent nonradiative energy transfer from Gd3+ to Ce3+ ions in co-doped LuAG:Ce,Gd garnet scintillators. J. Lumin. 167, 106–113 (2015)CrossRefGoogle Scholar
  55. 55.
    D. Spassky, A. Vasil’ev, A. Belsky, N. Fedorov, P. Martin, S. Markov, O. Buzanov, N. Kozlova, V. Shlegel, Excitation density effects in luminescence properties of CaMoO4 and ZnMoO4. Opt. Mater. 90, 7–13 (2019)ADSCrossRefGoogle Scholar
  56. 56.
    A. Vedda, M. Fasoli, Tunneling recombinations in scintillators, phosphors, and dosimeters. Radiat. Meas. 118, 86–97 (2018)CrossRefGoogle Scholar
  57. 57.
    G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, The role of different linear and non-linear channels of relaxation in scintillator non-proportionality. J. Lumin. 129, 1790–1793 (2009)CrossRefGoogle Scholar
  58. 58.
    W.W. Moses, G.A. Bizarri, R.T. Williams, S.A. Payne, A.N. Vasil’ev, J. Singh, Q. Li, J.Q. Grim, W.–.S. Choong, The origins of scintillator non-proportionality. IEEE Trans. Nucl. Sci. 59, 2038–2044 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    A.N. Belsky, private communication, 26 June 2019Google Scholar
  60. 60.
    S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys. Med. Biol. 61, 2802–2837 (2016)CrossRefGoogle Scholar
  61. 61.
    E. Auffray, R. Augulis, A. Borisevich, V. Gulbinas, A. Fedorov, M. Korjik, M.T. Lucchini, V. Mechinsky, S. Nargelas, E. Songaila, G. Tamulaitis, A. Vaitkevičius, S. Zazubovich, Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 178, 54–60 (2016)CrossRefGoogle Scholar
  62. 62.
    G. Tamulaitis, A. Vaitkeviˇcius, S. Nargelas, R. Augulis, V. Gulbinas, P. Bohacek, M. Nikl, A. Borisevich, A. Fedorov, M. Korjik, E. Auffray, Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 870, 25–29 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    M.H. Du, Chemical trends of electronic and optical properties of ns2 ions in halides. J. Mater. Chem. C 2, 4784–4791 (2014)CrossRefGoogle Scholar
  64. 64.
    P. Dorenbos, Modeling the chemical shift of lanthanide 4f electron binding energies. Phys. Rev. B 85, 165107 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    P. Dorenbos, Charge transfer bands in optical materials and related defect level location. Opt. Mater. 69, 8–22 (2017)ADSCrossRefGoogle Scholar
  66. 66.
    C. Pedrini, C. Dujardin, J.C. Gâcon, A.N. Belsky, A.N. Vasil’ev, A.G. Petrosyan, Cerium-doped fluorescent and scintillating ionic crystals. Radiat. Eff. Defects Solids 154, 277–286 (2007)ADSCrossRefGoogle Scholar
  67. 67.
    G. Tamulatis, A. Vasil’ev, M. Korzhik, A. Mazzi, A. Gola, S. Nargelas, A. Vaitkevičius, A. Fedorov, D. Kozlov, Improvement of the time resolution of radiation detectors based on Gd3Al2Ga3O12 scintillators with SIPM readout. IEEE Trans. Nucl. Sci. 66, 1879–1888 (2019)ADSCrossRefGoogle Scholar
  68. 68.
    A. Belsky, K. Lebbou, V. Kononets, O. Sidletskiy, A. Gektin, E. Auffray, D. Spassky, A. Vasil'ev, Mechanisms of luminescence decay in YAG-Ce,Mg fibers excited by γ- and X-rays. Opt. Mater. 92, 341–346 (2019)ADSCrossRefGoogle Scholar
  69. 69.
    M.T. Lucchini, V. Babin, P. Bohacek, S. Gundacker, K. Kamada, M. Nikl, A. Petrosyan, A. Yoshikawa, E. Auffray, Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 816, 176–183 (2016)ADSCrossRefGoogle Scholar
  70. 70.
    Y. Wu, F. Meng, M. Qi Li, C.L. Koschan, Melcher, role of Ce4+ in the scintillation mechanism of Codoped Gd3Ga3Al2O12:Ce. Phys. Rev. Appl. 044009, 2 (2014)Google Scholar
  71. 71.
    E. Sakai, Recent measurements on scintillator-photodetector systems. IEEE Trans. Nucl. Sci. 34, 418–422 (1987)ADSCrossRefGoogle Scholar
  72. 72.
    A.N. Belsky, A.N. Vasilev, V.V. Mikhailin, A.V. Gektin, N.V. Shiran, A.L. Rogalev, E.I. Zinin, Time-resolved XEOL spectroscopy of new scintillators based on CsI. Rev. Sci. Instrum. 63, 806–809 (1992)ADSCrossRefGoogle Scholar
  73. 73.
    A.V. Gektin, N.V. Shiran, A.N. Belskiy, A.N. Vasil’ev, Fast UV scintillations in CsI-type crystals. Nucl. Tracks Radiat. Meas. 21, 11–13 (1993)CrossRefGoogle Scholar
  74. 74.
    H. Nishimura, M. Sakata, T. Tsujimoto, M. Nakayama, Origin of the 4.1-eV luminescence in pure CsI scintillator. Phys. Rev. B 51, 2167–2172 (1995)ADSCrossRefGoogle Scholar
  75. 75.
    A.N. Belsky, A.N. Vasilev, V.V. Mikhailin, A.V. Gektin, P. Martin, C. Pedrini, D. Bouttet, Experimental-study of the excitation threshold of fast intrinsic luminescence of CsI. Phys. Rev. B 49, 13197–13200 (1994)ADSCrossRefGoogle Scholar
  76. 76.
    A. Belsky, N. Fedorov, S. Gridin, A. Gektin, P. Martin, D. Spassky, A. Vasil’ev, Time-resolved luminescence z-scan of CsI using power femtosecond laser pulses. Radiat. Meas. 124, 1–8 (2019)CrossRefGoogle Scholar
  77. 77.
    D. Spassky, A. Vasil’ev, A. Belsky, N. Fedorov, P. Martin, S. Markov, O. Buzanov, N. Kozlova, V. Shlegel, Excitation density effects in luminescence properties of CaMoO4 and ZnMoO4. Opt. Mater. 90, 7–13 (2019)ADSCrossRefGoogle Scholar
  78. 78.
    K. Tanimura, N. Itoh, Relaxation of excitons perturbed by self-trapped excitons in RbI: Evidence for exciton fusion in inorganic solids with strong electron-phonon coupling. Phys. Rev. Lett. 64, 1429–1432 (1990)ADSCrossRefGoogle Scholar
  79. 79.
    M. Patrick, N. Fedorov, A. Belsky, A.N. Vasil’ev, Free and bound excitons in ZnO at variable excitation density, in Book of abstracts of the 2018 Europhysical Conference on Defects in Insulating Materials, (EURODIM 2018, Bydgoszcz, 2018), p. 136Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mikhail Korzhik
    • 1
  • Gintautas Tamulaitis
    • 2
  • Andrey N. Vasil’ev
    • 3
  1. 1.Research Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Semiconductor Physics DepartmentVilnius UniversityVilniusLithuania
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations