A Status Quo Biased Multistage Decision Model for Regional Agricultural Socioeconomic Planning Under Fuzzy Information

  • Janusz KacprzykEmail author
  • Yuriy P. Kondratenko
  • Jos’e M. Merigó
  • Jorge Hernandez Hormazabal
  • Gia Sirbiladze
  • Ana Maria Gil-Lafuente
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 203)


We proposed a novel fuzzy multistage control model of sustainable regional agricultural development which better reflects specific features of human stakeholders. First, we use fuzzy logic for the modeling of imprecision in human judgments, intentions, preferences, evaluations, etc. Second, we propose to reflect in the model the so called status quo bias of the humans which basically stands for a common propensity of the humans to stay with known and already employed procedures and courses of action, avoiding larger changes. We develop therefore a human centric model. We also indicate that the inclusion of the status quo bias can be viewed as a way to mitigate risk which is crucial, notably in the case of agriculture. We present some simple example of how a best (optimal) investment policy can be obtained under different development scenarios, and indicate what change the inclusion of the status quo bias brings.



The contribution of the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems (, funded by the European Union under their funding scheme H2020-MSCARISE-2015 is acknowledged by Janusz Kacprzyk and Jorge Hernandez Hormazabal.


  1. 1.
    Alfaro-García, V.G., Merigó, J.M., Gil-Lafuente, A., M, Kacprzyk J.: Logarithmic aggregation operators and distance measures. Int. J. Intell. Syst. 33(7), 1488–1506 (2018)CrossRefGoogle Scholar
  2. 2.
    Anselin-Avila, E., Gil-Lafuente, A.M.: Fuzzy logic in the strategic analysis: impact of the external factors over business. Int. J. Bus. Innov. Res. 3(5), 515–534 (2009)CrossRefGoogle Scholar
  3. 3.
    Beedell, J.I., Rehman, T.: Using social psychology models to understand farmers’s conservation behaviour. J. Rural Stud. 16(1), 117–127 (2000)CrossRefGoogle Scholar
  4. 4.
    Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, 141–164 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Desdoigts, A., Cordaro, F.: Learning versus status quo bias and the role of social capital in technology adoption: the case of cocoa farmers in C\(\hat{\text{x}}\)ote d’Ivoire. Working paper 20160005, Université Paris 1 Panthéon Sorbonne, UMR Développement et Sociétés (2016)Google Scholar
  6. 6.
    Domptail, S., Nuppenau, E.-A.: The role of uncertainty and expectations in modeling (range) land use strategies: an application of dynamic o ptimization modeling with recursion. Ecol. Econ. 69(12), 2475–2485 (2010)CrossRefGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)zbMATHCrossRefGoogle Scholar
  9. 9.
    Feola, G., Binder, C.P.: Towards an improved understanding of farmers’ behaviour: the integrative agent-centred (IAC) framework. Ecol. Econ. 69(12), 2323–2333 (2010)CrossRefGoogle Scholar
  10. 10.
    Francelin, R.A., Kacprzyk, J., Gomide, F.A.C.: Neural network based algorithm for dynamic system optimization. Asian J. Control 3(2), 131–142 (2001)Google Scholar
  11. 11.
    Francelin, R.A., Gomide, F.A.C., Kacprzyk, J.: A biologically inspired neural network for dynamic programming. Int. J. Neural Syst. 11(6), 561–572 (2001)CrossRefGoogle Scholar
  12. 12.
    Haselton, M.G., Nettle, D., Andrews, P.W.: The evolution of cognitive bias. In: Buss, D.M. (ed.) Handbook of Evolutionary Psychology, pp. 724–746. Wiley, Hoboken (2005)Google Scholar
  13. 13.
    Hermann, D., Musshoff, O., Agethen, K.: Investment behavior and status quo bias of conventional and organic hog farmers: an experimental approach. Renew. Agric. Food Syst. 31(4), 318–329 (2016)CrossRefGoogle Scholar
  14. 14.
    Hilbert, M.: Toward a synthesis of cognitive biases: how noisy information processing can bias human decision making. Psychol. Bull. 138(2), 211–237 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hotaling, J.M., Busemeyer, J.R.: DFT-D: a cognitive-dynamical model of dynamic decision making. Synthese 189(1), 67–80 (2012)CrossRefGoogle Scholar
  16. 16.
    Jones, J.W., et al.: Brief history of agricultural systems modeling. Agric. Syst. 155, 240–254 (2017)CrossRefGoogle Scholar
  17. 17.
    Kacprzyk, J.: A branch-and-bound algorithm for the multistage control of a nonfuzzy system in a fuzzy environment. Control Cybern. 7, 51–64 (1978)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kacprzyk, J.: A branch-and-bound algorithm for the multistage control of a fuzzy system in a fuzzy environment. Kybernetes 8, 139–147 (1979)zbMATHCrossRefGoogle Scholar
  19. 19.
    Kacprzyk, J.: Multistage Decision Making under Fuzziness. Verlag TÜV Rheinland, Cologne (1983)zbMATHGoogle Scholar
  20. 20.
    Kacprzyk, J.: Design of socio-economic regional development policies via a fuzzy decision making model. In: Straszak, A. (ed.) Large Scale Systems Theory and Applications, Proceedings of Third IFAC/IFORS Symposium (Warsaw, Poland, 1983), pp. 228–232. Pergamon Press, Oxford (1984)Google Scholar
  21. 21.
    Kacprzyk, J.: Multistage control under fuzziness using genetic algorithms. Control Cybern. 25, 1181–1215 (1996)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kacprzyk, J.: Multistage Fuzzy Control. Wiley, Chichester (1997)zbMATHGoogle Scholar
  23. 23.
    Kacprzyk, J.: A genetic algorithm for the multistage control of a fuzzy system in a fuzzy environment. Mathw. Soft Comput. IV, 219–232 (1997)Google Scholar
  24. 24.
    Kacprzyk, J.: Multistage control of a stochastic system in a fuzzy environment using a genetic algorithm. Int. J. Intell. Syst. 13, 1011–1023 (1998)CrossRefGoogle Scholar
  25. 25.
    Kacprzyk, J.: Including socio-economic aspects in a fuzzy multistage decision making model of regional development planning. In: Reznik, L., Dimitrov, V., Kacprzyk, J. (eds.) Fuzzy Systems Design, pp. 86–102. Physica-Verlag (Springer), Heidelberg (1998)zbMATHCrossRefGoogle Scholar
  26. 26.
    Kacprzyk, J.: Towards perception-based fuzzy modelling: an extended multistage fuzzy control model and its use in sustainable regional development planning. In: Sinčak, P., Vašçak, J., Hirota, K. (eds.) Machine Intelligence? Quo Vadis? pp. 301–337. World Scientific, Singapore (2004)Google Scholar
  27. 27.
    Kacprzyk, J.: Fuzzy dynamic programming: interpolative reasoning for an efficient derivation of optimal control policies. Control Cybern. 42(1), 63–84 (2013)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kacprzyk, J.: Cognitive informatics: a proper framework for the use of fuzzy dynamic programming for the modeling of regional development? In: Tamir, D.E., Rishe, N.D., Kandel, A. (eds.) Fifty Years of Fuzzy Logic and its Applications, pp. 183–200. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  29. 29.
    Kacprzyk, J.: Multistage fuzzy control of a stochastic system using a bacterial genetic algorithm. In: Grzegorzewski, P., Gagolewski, M., Hryniewicz, O., Gil, M.Á. (eds.) Strengthening Links Between Data Analysis and Soft Computing, pp. 273–283. Springer, Heidelberg (2015)Google Scholar
  30. 30.
    Kacprzyk, J., Esogbue, A.O.: Fuzzy dynamic programming: main developments and applications. Fuzzy Sets Syst. 81, 31–46 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kacprzyk, J., Straszak, A.: Application of fuzzy decision making models for determining optimal policies in ‘stable’ integrated regional development. In: Wang, P.P., Chang, S.K. (eds.) Fuzzy Sets Theory and Applications to Policy Analysis and Information Systems, pp. 321–328. Plenum, New York (1980)Google Scholar
  32. 32.
    Kacprzyk, J., Straszak, A.: A fuzzy approach to the stability of integrated regional development. In: Lasker, G.E. (ed.) Applied Systems and Cybernetics, vol. 6, pp. 2997–3004. Pergamon Press, New York (1982)Google Scholar
  33. 33.
    Kacprzyk, J., Straszak, A.: Determination of ‘stable’ regional development trajectories via a fuzzy decision making model. In: Yager, R.R. (ed.) Recent Developments in Fuzzy Sets (2019) and Possibility Theory, pp. 531–541. Pergamon Press, New York (1982)Google Scholar
  34. 34.
    Kacprzyk, J., Straszak, A.: Determination of stable trajectories for integrated regional development using fuzzy decision models. IEEE Trans. Syst. Man Cybern. SMC-14, 310–313 (1984)zbMATHCrossRefGoogle Scholar
  35. 35.
    Kacprzyk, J., Sugianto, L.F.: Multistage fuzzy control involving objective and subjective aspects. In: Proceedings of the 2nd International Conference on Knowledge-Based Intelligent Electronic Systems KES-98, Adelaide, Australia, pp. 564–573 (1998)Google Scholar
  36. 36.
    Kacprzyk, J., Owsiński, J.W., Straszak, A.: Agricultural policy making for integrated regional development in a mixed economy. In: Titli, A., Singh, M.G. (eds.) Proceedings of Second IFAC Large Scale Systems Theory and Applications Symposium (Toulouse, France, 1979), pp. 9–21. Pergamon Press, Oxford (1980)Google Scholar
  37. 37.
    Kacprzyk, J., Francelin, R.A., Gomide, F.A.C.: Involving objective and subjective aspects in multistage decision making and control under fuzziness: dynamic programming and neural networks. Int. J. Intell. Syst. 14, 79–104 (1999)zbMATHCrossRefGoogle Scholar
  38. 38.
    Kacprzyk, J., Yager, R.R., Merigó, J.M.: Towards human-centric aggregation via ordered weighted aggregation operators and linguistic data summaries: a new perspective on Zadeh’s inspirations. IEEE Comput. Intell. Mag. 14(1), 16–30 (2019)CrossRefGoogle Scholar
  39. 39.
    Kahneman, D., Slovic, P., Tversky, A.: Judgment Under Uncertainty: Heuristics and Biases. Cambridge University Press, New York (1982)CrossRefGoogle Scholar
  40. 40.
    Kahnemen, D., Knetsch, J.L., Thaler, R.H.: Anomalies: the endowment effect, loss aversion and status quo bias. J. Econ. Perspect. 5(1), 193–2006 (1991)CrossRefGoogle Scholar
  41. 41.
    Kondratenko, Y.P., Sidenko, I.V.: Design and reconfiguration of intelligent knowledge-based system for fuzzy multi-criteria decision making in transport logistics. J. Comput. Optim. Econ. Financ. 6(3), 229–242 (2014)Google Scholar
  42. 42.
    Lorkowski, J., Kreinovich, V.: Likert-type fuzzy uncertainty from a traditional decision making viewpoint: how symmetry helps explain human decision making (including seemingly irrational behavior) (survey). Appl. Comput. Math. 3(3), 275–298 (2014)MathSciNetzbMATHGoogle Scholar
  43. 43.
    MerigóJ, M., Casanovas, M.: The fuzzy generalized OWA operator and its application in strategic decision making. Cybern. Syst. 41(5), 359–370 (2010)CrossRefGoogle Scholar
  44. 44.
    Merigó, J.M., Casanovas, M.: Decision making with distance measures and induced aggregation operators. Comput. Ind. Eng. 60, 66–76 (2011)zbMATHCrossRefGoogle Scholar
  45. 45.
    Merigó, J.M., Gil-Lafuente, A.M.: Decision making techniques in business and economics based on the OWA operator. SORT Stat. Oper. Res. Trans. 36, 81–101 (2012)zbMATHGoogle Scholar
  46. 46.
    Merigó, J.M., Yager, R.R.: Generalized moving averages, distance measures and OWA operators. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 21, 533–559 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Merigó, J.M., Gil-Lafuente, A.M., Gil-Aluja, J.: Decision making with the induced generalized adequacy coefficient. Appl. Comput. Math. 10(3), 321–339 (2011)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Merigó, J.M., Lobato-Carral, C., Carrilero-Castillo, A.: Decision making in the European Union under risk and uncertainty. Eur. J. Int. Manag. 6(5), 590–609 (2012)CrossRefGoogle Scholar
  49. 49.
    Merigó, J.M., Palacios-Marqués, D., Soto-Acosta, P.: Distance measures, weighted averages, OWA operators and Bonferroni means. Appl. Soft Comput. 50, 356–366 (2017)CrossRefGoogle Scholar
  50. 50.
    Oechssler, J., Roider, A., Schmitz, P.W.: Cognitive abilities and behavioral biases. J. Econ. Behav. Organ. 72(1), 147–152 (2009)CrossRefGoogle Scholar
  51. 51.
    Pedrycz, W.: Granular computing: concepts and algorithmic developments. Appl. Comput. Math. 10(1), 175–194 (2011)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Rossi Borges, J.A., Oude Lansink, A.G.J.M., Marques, Ribeiro C., Lutke, V.: Understanding farmers’ intention to adopt improved natural grassland using the theory of planned behavior. Livest. Sci. 169, 163–174 (2014)CrossRefGoogle Scholar
  53. 53.
    Samuelson, W., Zeckhauser, R.: Status quo bias in decision making. J. Risk Uncertain. 1, 7–59 (1988)CrossRefGoogle Scholar
  54. 54.
    Senger, I., Rossi Borges, J.A., Dessimon Machado, J.A.: Using the theory of planned behavior to understand the intention of small farmers in diversifying their agricultural production. J. Rural Stud. 49, 32–40 (2017)CrossRefGoogle Scholar
  55. 55.
    Simon, H.A.: A behavioral model of rational choice. Q. J. Econ. 69(1), 99–118 (1955)CrossRefGoogle Scholar
  56. 56.
    Sirbiladze, G., Khutsishvili, I., Ghvaberidze, I.: Multistage decision-making fuzzy methodology for optimal investments based on experts? evaluations. Eur. J. Oper. Res. 232(1), 169–177 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Sirbiladze, G., Khutsishvili, I., Badagadze, O., Kapanadze, M.: More precise decision-making methodology in the temporalized body of evidence. Application in the information technology management. Int. J. Inf. Technol. Decis. Mak. 15(6), 1469–1502 (2016)CrossRefGoogle Scholar
  58. 58.
    Thomas, L.C. (ed.): Golden Developments in Operational Research. Pergamon Press, New York (1987)Google Scholar
  59. 59.
    Tversky, A., Kahneman, D.: Judgement under uncertainty: heuristics and biases. Science 185(4157), 1124–1131 (1974)CrossRefGoogle Scholar
  60. 60.
    Torra, V.: The weighted OWA operator. Int. J. Intell. Syst. 12, 153–166 (1997)zbMATHCrossRefGoogle Scholar
  61. 61.
    Wang, Y.: On cognitive informatics, brain and mind. A Transdiscipl. J. Neurosci. Neurophilos. 4(2), 151–167 (2003)Google Scholar
  62. 62.
    Wang, Y.: The theoretical framework of cognitive informatics. Int. J. Cogn. Inf. Nat. Intell. 1(1), 1–27 (2007)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Wang, Y., Ruhe, G.: The cognitive process of decision making. Int. J. Cogn. Inf. Nat. Intell. 1(2), 73–85 (2007)CrossRefGoogle Scholar
  64. 64.
    Yager, R.R.: Modeling, querying and mining social relational networks using fuzzy set techniques (Survey). Appl. Comput. Math. 13(1), 3–17 (2014)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Yager, R.R., Kacprzyk, J. (eds.): The Ordered Weighted Averaging Operators: Theory, Methodology and Applications. Kluwer, Boston (1996)Google Scholar
  66. 66.
    Yager, R.R., Kacprzyk, J., Beliakov, G.: Recent Developments in the Ordered Weighted Averaging Operators - Theory and Practice. Springer, New York (2011)Google Scholar
  67. 67.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)zbMATHCrossRefGoogle Scholar
  68. 68.
    Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23, 421–427 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC-2, 28–44 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9, 149–184 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Zadeh, L.A., Kacprzyk, J. (eds.): Fuzzy Logic for the Management of Uncertainty. Wiley, New York (1992)Google Scholar
  73. 73.
    Zadeh, L.A., Kacprzyk, J. (eds.): Computing with Words in Information/Intelligent Systems. Part 1: Foundations, Part 2: Applications. Physica–Verlag (Springer), Heidelberg (1999)Google Scholar
  74. 74.
    Zhang, S.X., Cueto, J.: The study of bias in entrepreneurship. Enterpreneursh. Theory Pract. 44(3), 419–454 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Janusz Kacprzyk
    • 1
    • 2
    Email author
  • Yuriy P. Kondratenko
    • 3
  • Jos’e M. Merigó
    • 4
  • Jorge Hernandez Hormazabal
    • 5
  • Gia Sirbiladze
    • 6
  • Ana Maria Gil-Lafuente
    • 7
  1. 1.Systems Research Institute, Polish Academy of SciencesWarsawPoland
  2. 2.WIT – Warsaw School of Information TechnologyWarsawPoland
  3. 3.Department of Intelligent Information SystemsPetro Mohyla Black Sea National UniversityMykolaivUkraine
  4. 4.Department of Management Control and Information SystemsUniversity of ChileSantiagoChile
  5. 5.Management School, University of LiverpoolLiverpoolUK
  6. 6.Department of Computer SciencesIvane Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  7. 7.Department of Business AdministrationUniversity of BarcelonaBarcelonaSpain

Personalised recommendations