Advertisement

Horizontal Gene Transfer in Metazoa: Examples and Methods

  • Yuki Yoshida
  • Reuben W. Nowell
  • Kazuharu Arakawa
  • Mark BlaxterEmail author
Chapter

Abstract

Horizontal gene transfer (HGT) is now widely accepted as an indispensable mechanism in the evolution of microbes, but its contribution in metazoans still raises controversies. This is partly due to the methodologies used for the comprehensive prediction of HGT candidates from genomic information and also because the specific pathways that allow the incorporation of foreign DNA in the germline cells and subsequently to their chromosomes remain elusive. Here, we review the methods for HGT detection and examples of HGT events in two metazoan groups, bdelloid rotifers and tardigrades. Both groups are parthenogenetic and are capable of surviving desiccation (anhydrobiosis), and the roles of these features in promoting HGT, and of HGT loci to these phenomena, are discussed.

Keywords

Horizontal gene transfer Alien Index HGT Index Bdelloid rotifer Tardigrade 

Notes

Acknowledgements

We thank Michael Plewka (www.plingfactory.de) for the image of R. macrura.

References

  1. Acuña R, Padilla BE, Flórez-Ramos CP et al (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci U S A 109:4197–4202.  https://doi.org/10.1073/pnas.1121190109 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alsmark C, Foster PG, Sicheritz-Ponten T et al (2013) Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol 14:R19.  https://doi.org/10.1186/gb-2013-14-2-r19 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ambrose KV, Koppenhöfer AM, Belanger FC (2014) Horizontal gene transfer of a bacterial insect toxin gene into the Epichloë fungal symbionts of grasses. Sci Rep 4:5562.  https://doi.org/10.1038/srep05562
  4. Arakawa K (2016) No evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci U S A 113:E3057.  https://doi.org/10.1073/pnas.1602711113 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arakawa K, Yoshida Y, Tomita M (2016) Genome sequencing of a single tardigrade Hypsibius dujardini individual. Sci Data 3:160063.  https://doi.org/10.1038/sdata.2016.63 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Archibald JM (2015) Endosymbiosis and eukaryotic cell evolution. Curr Biol 25:R911–R921.  https://doi.org/10.1016/j.cub.2015.07.055 CrossRefPubMedGoogle Scholar
  7. Barraclough TG, Fontaneto D, Ricci C, Herniou EA (2007) Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Mol Biol Evol 24:1952–1962.  https://doi.org/10.1093/molbev/msm123 CrossRefPubMedGoogle Scholar
  8. Bast J, Parker DJ, Dumas Z et al (2018) Consequences of asexuality in natural populations: insights from stick insects. Mol Biol Evol 35:1668–1677.  https://doi.org/10.1093/molbev/msy058 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bemm F, Weiß CL, Schultz J, Förster F (2016) Genome of a tardigrade: horizontal gene transfer or bacterial contamination? Proc Natl Acad Sci U S A 113:E3054–E3056.  https://doi.org/10.1073/pnas.1525116113 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bemm FM, Burleigh L, Foerster F et al (2017) Draft genome of the Eutardigrade Milnesium tardigradum sheds light on ecdysozoan evolution. BioRxiv.  https://doi.org/10.1101/122309
  11. Blanc G, Agarkova I, Grimwood J et al (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39.  https://doi.org/10.1186/gb-2012-13-5-r39 CrossRefGoogle Scholar
  12. Blaxter M (2007) Symbiont genes in host genomes: fragments with a future? Cell Host Microbe 2:211–213.  https://doi.org/10.1016/j.chom.2007.09.008 CrossRefPubMedGoogle Scholar
  13. Boothby TC, Goldstein B (2016) Reply to Bemm et al. and Arakawa: identifying foreign genes in independent Hypsibius dujardini genome assemblies. Proc Natl Acad Sci U S A 113:E3058–E3061.  https://doi.org/10.1073/pnas.1601149113 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Boothby TC, Tenlen JR, Smith FW et al (2015) Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci U S A 112:15976–15981.  https://doi.org/10.1073/pnas.1510461112 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boschetti C, Pouchkina-Stantcheva N, Hoffmann P, Tunnacliffe A (2011) Foreign genes and novel hydrophilic protein genes participate in the desiccation response of the bdelloid rotifer Adineta ricciae. J Exp Biol 214:59–68.  https://doi.org/10.1242/jeb.050328 CrossRefGoogle Scholar
  16. Boschetti C, Carr A, Crisp A et al (2012) Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genet 8:e1003035.  https://doi.org/10.1371/journal.pgen.1003035 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Clasen FJ, Pierneef RE, Slippers B, Reva O (2018) EuGI: a novel resource for studying genomic islands to facilitate horizontal gene transfer detection in eukaryotes. BMC Genomics 19:323.  https://doi.org/10.1186/s12864-018-4724-8 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Coghlan A, Fiedler TJ, McKay SJ et al (2008) nGASP–the nematode genome annotation assessment project. BMC Bioinf 9:549.  https://doi.org/10.1186/1471-2105-9-549 CrossRefGoogle Scholar
  19. Crisp A, Boschetti C, Perry M et al (2015) Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol 16:50.  https://doi.org/10.1186/s13059-015-0607-3 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC (2013) Human papillomavirus and cervical cancer. Lancet 382:889–899.  https://doi.org/10.1016/S0140-6736(13)60022-7 CrossRefPubMedGoogle Scholar
  21. Crowe JH (2014) Anhydrobiosis: an unsolved problem. Plant Cell Environ 37:1491–1493.  https://doi.org/10.1111/pce.12304 CrossRefPubMedGoogle Scholar
  22. Daborn PJ, Waterfield N, Silva CP et al (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci U S A 99:10742–10747.  https://doi.org/10.1073/pnas.102068099 CrossRefGoogle Scholar
  23. Daimon T, Taguchi T, Meng Y et al (2008) Beta-fructofuranosidase genes of the silkworm, Bombyx mori: insights into enzymatic adaptation of B. mori to toxic alkaloids in mulberry latex. J Biol Chem 283:15271–15279.  https://doi.org/10.1074/jbc.M709350200 CrossRefGoogle Scholar
  24. Danchin EGJ (2016) Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube? BMC Biol 14:101.  https://doi.org/10.1186/s12915-016-0330-x CrossRefPubMedPubMedCentralGoogle Scholar
  25. Debortoli N, Li X, Eyres I et al (2016) Genetic exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to meiotic sex. Curr Biol 26:723–732.  https://doi.org/10.1016/j.cub.2016.01.031 CrossRefGoogle Scholar
  26. Delmont TO, Eren AM (2016) Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies. PeerJ 4:e1839.  https://doi.org/10.7717/peerj.1839 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dunning Hotopp JC, Estes AM (2014) Biology wars: the eukaryotes strike back. Cell Host Microbe 16:701–703.  https://doi.org/10.1016/j.chom.2014.11.014 CrossRefPubMedGoogle Scholar
  28. Dunning Hotopp JC, Clark ME, Oliveira DCSG et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756.  https://doi.org/10.1126/science.1142490 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Eren AM, Esen ÖC, Quince C et al (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data’. PeerJ 3:e1319.  https://doi.org/10.7717/peerj.1319 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Erkut C, Penkov S, Khesbak H et al (2011) Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr Biol 21:1331–1336.  https://doi.org/10.1016/j.cub.2011.06.064 CrossRefPubMedGoogle Scholar
  31. Eyres I, Boschetti C, Crisp A et al (2015) Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol 13:90.  https://doi.org/10.1186/s12915-015-0202-9 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Flot J-F, Hespeels B, Li X et al (2013) Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500:453–457.  https://doi.org/10.1038/nature12326 CrossRefPubMedGoogle Scholar
  33. Gabriel WN, McNuff R, Patel SK et al (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559.  https://doi.org/10.1016/j.ydbio.2007.09.055 CrossRefPubMedGoogle Scholar
  34. Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213.  https://doi.org/10.1126/science.1156407 CrossRefPubMedGoogle Scholar
  35. Guidetti R, Altiero T, Rebecchi L (2011) On dormancy strategies in tardigrades. J Insect Physiol 57:567–576.  https://doi.org/10.1016/j.jinsphys.2011.03.003 CrossRefPubMedGoogle Scholar
  36. Gusev O, Nakahara Y, Vanyagina V et al (2010) Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chironomid: linkage with radioresistance. PLoS One 5:e14008.  https://doi.org/10.1371/journal.pone.0014008 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gusev O, Suetsugu Y, Cornette R et al (2014) Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat Commun 5:4784.  https://doi.org/10.1038/ncomms5784 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Harding T, Roger AJ, Simpson AGB (2017) Adaptations to high salt in a Halophilic Protist: differential expression and gene acquisitions through duplications and gene transfers. Front Microbiol 8:944.  https://doi.org/10.3389/fmicb.2017.00944 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hashimoto T, Horikawa DD, Saito Y et al (2016) Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun 7:12808.  https://doi.org/10.1038/ncomms12808 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hengherr S, Heyer AG, Köhler H-R, Schill RO (2008) Trehalose and anhydrobiosis in tardigrades--evidence for divergence in responses to dehydration. FEBS J 275:281–288.  https://doi.org/10.1111/j.1742-4658.2007.06198.x CrossRefPubMedGoogle Scholar
  41. Hespeels B, Knapen M, Hanot-Mambres D et al (2014) Gateway to genetic exchange? DNA double-strand breaks in the bdelloid rotifer Adineta vaga submitted to desiccation. J Evol Biol 27:1334–1345.  https://doi.org/10.1111/jeb.12326 CrossRefGoogle Scholar
  42. Husnik F, McCutcheon JP (2016) Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci U S A 113:E5416–E5424.  https://doi.org/10.1073/pnas.1603910113 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Husnik F, McCutcheon JP (2018) Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol 16:67–79.  https://doi.org/10.1038/nrmicro.2017.137 CrossRefPubMedGoogle Scholar
  44. Husnik F, Nikoh N, Koga R et al (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153:1567–1578.  https://doi.org/10.1016/j.cell.2013.05.040 CrossRefPubMedGoogle Scholar
  45. Jönsson KI, Persson O (2010) Trehalose in three species of desiccation tolerant tardigrades. Open Zool J 3:1–5CrossRefGoogle Scholar
  46. Keilin D (1959) The Leeuwenhoek lecture the problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B Biol Sci 150:149–191CrossRefGoogle Scholar
  47. Koonin EV (2015) Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biol 13:84.  https://doi.org/10.1186/s12915-015-0194-5 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Koutsovoulos G, Kumar S, Laetsch DR et al (2016) No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci U S A 113:5053–5058.  https://doi.org/10.1073/pnas.1600338113 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ku C, Nelson-Sathi S, Roettger M et al (2015a) Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524:427–432.  https://doi.org/10.1038/nature14963 CrossRefPubMedGoogle Scholar
  50. Ku C, Nelson-Sathi S, Roettger M et al (2015b) Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc Natl Acad Sci U S A 112:10139–10146.  https://doi.org/10.1073/pnas.1421385112 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921.  https://doi.org/10.1038/35057062 CrossRefPubMedGoogle Scholar
  52. Lee C-Y, Conrad MN, Dresser ME (2012) Meiotic chromosome pairing is promoted by telomere-led chromosome movements independent of bouquet formation. PLoS Genet 8:e1002730.  https://doi.org/10.1371/journal.pgen.1002730 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mock T, Otillar RP, Strauss J et al (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540.  https://doi.org/10.1038/nature20803 CrossRefPubMedGoogle Scholar
  54. Nester EW, Gordon MP, Amasino RM, Yanofsky MF (1984) Crown gall: a molecular and physiological analysis. Annu Rev Plant Physiol 35:387–413.  https://doi.org/10.1146/annurev.pp.35.060184.002131 CrossRefGoogle Scholar
  55. Nikoh N, McCutcheon JP, Kudo T et al (2010) Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet 6:e1000827.  https://doi.org/10.1371/journal.pgen.1000827 CrossRefGoogle Scholar
  56. Nowack ECM, Price DC, Bhattacharya D et al (2016) Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc Natl Acad Sci U S A 113:12214–12219.  https://doi.org/10.1073/pnas.1608016113 CrossRefGoogle Scholar
  57. Nowell RW, Almeida P, Wilson CG et al (2018) Comparative genomics of bdelloid rotifers: insights from desiccating and nondesiccating species. PLoS Biol 16:e2004830.  https://doi.org/10.1371/journal.pbio.2004830 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pett M, Coleman N (2007) Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 212:356–367.  https://doi.org/10.1002/path.2192 CrossRefPubMedGoogle Scholar
  59. Pittis AA, Gabaldón T (2016) Late acquisition of mitochondria by a host with chimeric prokaryotic ancestry. Nature 531:101–104.  https://doi.org/10.1038/nature16941 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Polz MF, Alm EJ, Hanage WP (2013) Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet 29:170–175.  https://doi.org/10.1016/j.tig.2012.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rancurel C, Legrand L, Danchin EGJ (2017) Alienness: rapid detection of candidate horizontal gene transfers across the tree of life. Genes 8(10):248.  https://doi.org/10.3390/genes8100248 CrossRefPubMedCentralGoogle Scholar
  62. Raymond JA, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS One 7:e35968.  https://doi.org/10.1371/journal.pone.0035968 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Regier JC, Shultz JW, Kambic RE, Nelson DR (2005) Robust support for tardigrade clades and their ages from three protein-coding nuclear genes. Invertebr Biol 123:93–100.  https://doi.org/10.1111/j.1744-7410.2004.tb00145.x CrossRefGoogle Scholar
  64. Ricard G, McEwan NR, Dutilh BE et al (2006) Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 7:22.  https://doi.org/10.1186/1471-2164-7-22 CrossRefGoogle Scholar
  65. Ricci C (1998) Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia 387:321–326CrossRefGoogle Scholar
  66. Ricci C, Covino C (2005) Anhydrobiosis of Adineta ricciae: costs and benefits. Hydrobiologia 546:307–314.  https://doi.org/10.1007/s10750-005-4238-7 CrossRefGoogle Scholar
  67. Richards TA, Leonard G, Soanes DM, Talbot NJ (2011) Gene transfer into the fungi. Fungal Biol Rev 25:98–110.  https://doi.org/10.1016/j.fbr.2011.04.003 CrossRefGoogle Scholar
  68. Salzberg SL (2017) Horizontal gene transfer is not a hallmark of the human genome. Genome Biol 18:85.  https://doi.org/10.1186/s13059-017-1214-2 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Salzberg SL, White O, Peterson J, Eisen JA (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903–1906.  https://doi.org/10.1126/science.1061036 CrossRefPubMedGoogle Scholar
  70. Savory F, Leonard G, Richards TA (2015) The role of horizontal gene transfer in the evolution of the oomycetes. PLoS Pathog 11:e1004805.  https://doi.org/10.1371/journal.ppat.1004805 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schönknecht G, Chen W-H, Ternes CM et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210.  https://doi.org/10.1126/science.1231707 CrossRefPubMedGoogle Scholar
  72. Schuster LN, Sommer RJ (2012) Expressional and functional variation of horizontally acquired cellulases in the nematode Pristionchus pacificus. Gene 506:274–282.  https://doi.org/10.1016/j.gene.2012.07.013 CrossRefGoogle Scholar
  73. Siderakis M, Tarsounas M (2007) Telomere regulation and function during meiosis. Chromosom Res 15:667–679.  https://doi.org/10.1007/s10577-007-1149-7 CrossRefGoogle Scholar
  74. Spang A, Saw JH, Jørgensen SL et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179.  https://doi.org/10.1038/nature14447 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Stanhope MJ, Lupas A, Italia MJ et al (2001) Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:940–944.  https://doi.org/10.1038/35082058 CrossRefPubMedGoogle Scholar
  76. Sung W-K, Zheng H, Li S et al (2012) Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 44:765–769.  https://doi.org/10.1038/ng.2295 CrossRefPubMedGoogle Scholar
  77. Switala J, O’Neil JO, Loewen PC (1999) Catalase HPII from Escherichia coli exhibits enhanced resistance to denaturation. Biochemistry 38:3895–3901.  https://doi.org/10.1021/bi982863z CrossRefPubMedGoogle Scholar
  78. Tanaka S, Tanaka J, Miwa Y et al (2015) Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic tardigrade improve osmotic tolerance of human cells. PLoS One 10:e0118272.  https://doi.org/10.1371/journal.pone.0118272 CrossRefGoogle Scholar
  79. Vos M, Hesselman MC, Te Beek TA et al (2015) Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol 23:598–605.  https://doi.org/10.1016/j.tim.2015.07.006 CrossRefPubMedGoogle Scholar
  80. Welch DBM, Ricci C, Meselson M (2009) Bdelloid rotifers: progress in understanding the success of an evolutionary scandal. In: Schön I, Martens K, Dijk P (eds) Lost sex. Springer, Dordrecht, pp 259–279CrossRefGoogle Scholar
  81. Wilson CG, Nowell RW, Barraclough TG (2018) Cross-contamination explains “inter and intraspecific horizontal genetic transfers” between asexual bdelloid rotifers. Curr biol 28:2436–2444.e14.  https://doi.org/10.1016/j.cub.2018.05.070 CrossRefGoogle Scholar
  82. Wybouw N, Dermauw W, Tirry L et al (2014) A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. Elife 3:e02365.  https://doi.org/10.7554/eLife.02365 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wybouw N, Pauchet Y, Heckel DG, Van Leeuwen T (2016) Horizontal gene transfer contributes to the evolution of arthropod herbivory. Genome Biol Evol 8:1785–1801.  https://doi.org/10.1093/gbe/evw119 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yamaguchi A, Tanaka S, Yamaguchi S et al (2012) Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade. PLoS One 7:e44209.  https://doi.org/10.1371/journal.pone.0044209 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yoshida Y, Koutsovoulos G, Laetsch DR et al (2017) Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLoS Biol 15:e2002266.  https://doi.org/10.1371/journal.pbio.2002266 CrossRefGoogle Scholar
  86. Yoshida Y, Konno S, Nishino R et al (2018) Ultralow input genome sequencing library preparation from a single tardigrade specimen. J Vis Exp 137:e57615.  https://doi.org/10.3791/57615
  87. Zaneveld JR, Nemergut DR, Knight R (2008) Are all horizontal gene transfers created equal? Prospects for mechanism-based studies of HGT patterns. Microbiology 154:1–15.  https://doi.org/10.1099/mic.0.2007/011833-0 CrossRefPubMedGoogle Scholar
  88. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358.  https://doi.org/10.1038/nature21031 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuki Yoshida
    • 1
  • Reuben W. Nowell
    • 2
  • Kazuharu Arakawa
    • 1
  • Mark Blaxter
    • 3
    Email author
  1. 1.Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
  2. 2.Department of Life SciencesImperial College LondonAscot, BerksUK
  3. 3.Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK

Personalised recommendations