Advertisement

Photobacterium damselae: How Horizontal Gene Transfer Shaped Two Different Pathogenic Lifestyles in a Marine Bacterium

  • Carlos R. OsorioEmail author
Chapter

Abstract

Photobacterium damselae is a marine pathogenic bacterium that includes two distinct subspecies, piscicida and damselae. The subspecies damselae is considered a non-clonal and generalist pathogen for a variety of marine animals and also for humans, whereas subsp. piscicida is a more specialized pathogen and only infects fish. Interestingly, most of their known virulence factors are encoded within mobile genetic elements, which include plasmids and pathogenicity islands. Highly virulent subsp. damselae isolates harbor the large conjugative plasmid pPHDD1 that encodes two potent cytotoxins, damselysin (Dly) and phobalysin P (PhlyP), whereas a third hemolysin phobalysin C (PhlyC) is encoded in chromosome I within a highly variable region that resembles a hot spot for recombination of horizontally acquired DNA. In addition, a chromosomal pathogenicity island encoding a vibrioferrin siderophore synthesis and uptake system is a feature of many subsp. damselae strains, and a large virulence plasmid that encodes a type III secretion system has been described in the type strain of this subspecies. Regarding the subspecies piscicida, many isolates harbor a small (pPHDP10) and a large plasmid (pPHDP70) that encode the apoptotic toxin AIP56 and the siderophore piscibactin for host iron scavenging, respectively. Moreover, subsp. piscicida genomes have undergone an expansion of insertion sequence (IS) elements that caused a massive gene decay, a process likely fueled by its host-dependent lifestyle. The repertoire of horizontally acquired DNA within the species is completed with a number of antibiotic resistance plasmids and integrative and conjugative elements (ICEs) that exhibit geographical distribution patterns. Collectively, horizontal gene transfer can be considered as a major driving force that shaped the distinct pathogenic strategies of each subspecies of P. damselae.

Keywords

Photobacterium damselae Damselysin Hemolysin AIP56 Plasmid Siderophore Pathogenicity island 

Notes

Acknowledgements

The research carried out in the author’s laboratory is supported by grant AGL2016-79738-R (AEI/FEDER, EU) from the State Agency for Research (AEI) of Spain, and co-funded by the FEDER Programme from the European Union.

References

  1. Balado M, Lemos ML, Osorio CR (2013a) Genetic characterization of pPHDP60, a novel conjugative plasmid from the marine fish pathogen Photobacterium damselae subsp. piscicida. Plasmid 70:154–159PubMedCrossRefGoogle Scholar
  2. Balado M, Lemos ML, Osorio CR (2013b) Integrating conjugative elements of the SXT/R391 family from fish-isolated Vibrios encode restriction-modification systems that confer resistance to bacteriophages. FEMS Microbiol Ecol 83:457–467PubMedCrossRefGoogle Scholar
  3. Balado M, Benzekri H, Labella AM, Claros MG, Manchado M, Borrego JJ, Osorio CR, Lemos ML (2017a) Genomic analysis of the marine fish pathogen Photobacterium damselae subsp. piscicida: insertion sequences proliferation is associated with chromosomal reorganisations and rampant gene decay. Infect Genet Evol 54:221–229PubMedCrossRefGoogle Scholar
  4. Balado M, Puentes B, Couceiro L, Fuentes-Monteverde JC, Rodriguez J, Osorio CR, Jiménez C, Lemos ML (2017b) Secreted citrate serves as iron carrier for the marine pathogen Photobacterium damselae subsp damselae. Front Cell Infect Microbiol 7:361PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bien TL, Sato-Takabe Y, Ogo M, Usui M, Suzuki S (2015) Persistence of multi-drug resistance plasmids in sterile water under very low concentrations of tetracycline. Microbes Environ 30:339–343PubMedPubMedCentralCrossRefGoogle Scholar
  6. Botella S, Pujalte MJ, Macian MC, Ferrus MA, Hernandez J, Garay E (2002) Amplified fragment length polymorphism (AFLP) and biochemical typing of Photobacterium damselae subsp. damselae. J Appl Microbiol 93:681–688PubMedCrossRefGoogle Scholar
  7. Buck JD, Wells RS, Rhinehart HL, Hansen LJ (2006) Aerobic microorganisms associated with free-ranging bottlenose dolphins in coastal Gulf of Mexico and Atlantic Ocean waters. J Wildl Dis 42:536–544PubMedCrossRefGoogle Scholar
  8. Burrus V, Marrero J, Waldor MK (2006) The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid 55:173–183PubMedCrossRefGoogle Scholar
  9. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15:1917–1942PubMedCrossRefGoogle Scholar
  10. Carniel E, Guilvout I, Prentice M (1996) Characterization of a large chromosomal “high-pathogenicity island” in biotype 1B Yersinia enterocolitica. J Bacteriol 178:6743–6751PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chiu T-H, Kao L-Y, Chen M-L (2013) Antibiotic resistance and molecular typing of Photobacterium damselae subsp. damselae, isolated from seafood. J Appl Microbiol 114:1184–1192PubMedCrossRefGoogle Scholar
  12. Cooper VS, Vohr SH, Wrocklage SC, Hatcher PJ (2010) Why genes evolve faster on secondary chromosomes in bacteria. PLoS Comput Biol 6:e1000732PubMedPubMedCentralCrossRefGoogle Scholar
  13. Crosa JH (1989) Genetics and molecular biology of siderophore mediated iron transport in bacteria. Microbiol Rev 53:517–530PubMedPubMedCentralGoogle Scholar
  14. Cutter DL, Kreger AS (1990) Cloning and expression of the damselysin gene from Vibrio damsela. Infect Immun 58:266–268PubMedPubMedCentralGoogle Scholar
  15. Daccord A, Ceccarelli D, Burrus V (2010) Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Mol Microbiol 78:576–588PubMedCrossRefGoogle Scholar
  16. del Castillo CS, Jang HB, Hikima J, Jung TS, Morii H, Hirono I, Kondo H, Kurosaka C, Aoki T (2013) Comparative analysis and distribution of pP9014, a novel drug resistance IncP-1 plasmid from Photobacterium damselae subsp. piscicida. Int J Antimicrob Agents 42:10–18PubMedCrossRefGoogle Scholar
  17. do Vale A, Marques F, Silva MT (2003) Apoptosis of sea bass (Dicentrarchus labrax L.) neutrophils and macrophages induced by experimental infection with Photobacterium damselae subsp. piscicida. Fish Shellfish Immunol 15:129–144PubMedCrossRefGoogle Scholar
  18. do Vale A, Silva MT, dos Santos NM, Nascimento DS, Reis-Rodrigues P, Costa-Ramos C, Ellis AE, Azevedo JE (2005) AIP56, a novel plasmid-encoded virulence factor of Photobacterium damselae subsp. piscicida with apoptogenic activity against sea bass macrophages and neutrophils. Mol Microbiol 58:1025–1038PubMedCrossRefGoogle Scholar
  19. do Vale A, Pereira C, Osorio CR, dos Santos NMS (2017) The apoptogenic toxin AIP56 is secreted by the type II secretion system of Photobacterium damselae subsp. piscicida. Toxins (Basel) 9:E368CrossRefGoogle Scholar
  20. Elkamel AA, Thune RL (2003) Invasion and replication of Photobacterium damselae subsp. piscicida in fish cell lines. J Aquat Anim Health 15:167–174CrossRefGoogle Scholar
  21. Elkamel AA, Hawke JP, Henk WG, Thune RL (2003) Photobacterium damselae subsp. piscicida is capable of replicating in hybrid striped bass macrophages. J Aquat Anim Health 15:175–183CrossRefGoogle Scholar
  22. Fouz B, Larsen JL, Nielsen B, Barja JL, Toranzo AE (1992) Characterization of Vibrio damsela strains isolated from turbot Scophthalmus maximus in Spain. Dis Aquat Org 12:155–166CrossRefGoogle Scholar
  23. Fouz B, Toranzo AE, Biosca EG, Mazoy R, Amaro C (1994) Role of iron in the pathogenicity of Vibrio damsela for fish and mammals. FEMS Microbiol Lett 121:181–188PubMedCrossRefGoogle Scholar
  24. Fouz B, Biosca EG, Amaro C (1997) High affinity iron-uptake systems in Vibrio damsela: role in the acquisition of iron from transferrin. J Appl Microbiol 82:157–167PubMedCrossRefGoogle Scholar
  25. Fouz B, Toranzo AE, Marco-Noales E, Amaro C (1998) Survival of fish-virulent strains of Photobacterium damselae subsp. damselae in seawater under starvation conditions. FEMS Microbiol Lett 168:181–186PubMedCrossRefGoogle Scholar
  26. Gauthier G, Lafay B, Ruimy R, Breittmayer V, Nicolas JL, Gauthier M, Christen R (1995) Small-subunit rRNA sequences and whole DNA relatedness concur for the reassignment of Pasteurella piscicida (Snieszko et al.) Janssen and Surgalla to the genus Photobacterium as Photobacterium damsela subsp. piscicida comb.nov. Int J Syst Bacteriol 45:139–144PubMedCrossRefGoogle Scholar
  27. Grimes DJ, Brayton P, Colwell RR, Gruber H (1985) Vibrios as autochthonous flora of neritic sharks. Syst Appl Microbiol 6:221–226CrossRefGoogle Scholar
  28. Harrison PW, Lower RP, Kim NK, Young JP (2010) Introducing the bacterial “chromid”: not a chromosome, not a plasmid. Trends Microbiol 18:141–148PubMedCrossRefGoogle Scholar
  29. Janssen WA, Surgalla MJ (1968) Morphology, physiology, and serology of a Pasteurella species pathogenic for white perch (Roccus americanus). J Bacteriol 96:1606–1610PubMedPubMedCentralGoogle Scholar
  30. Juiz-Rio S, Osorio CR, de Lorenzo V, Lemos ML (2005) Subtractive hybridization reveals a high genetic diversity in the fish pathogen Photobacterium damselae subsp. piscicida: evidence of a SXT-like element. Microbiology 151:2659–2669PubMedCrossRefGoogle Scholar
  31. Kim E, Aoki T (1993) The structure of the chloramphenicol resistance gene on a transferable R plasmid from the fish pathogen, Pasteurella piscicida. Microbiol Immunol 37:705–712PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kim EH, Aoki T (1994) The transposon-like structure of IS26-tetracycline, and kanamycin resistance determinant derived from transferable R plasmid of fish pathogen, Pasteurella piscicida. Microbiol Immunol 38:31–38PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kim EH, Aoki T (1996a) Sulfonamide resistance gene in a transferable R plasmid of Pasteurella piscicida. Microbiol Immunol 40:397–399PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kim E, Aoki T (1996b) Sequence analysis of the florfenicol resistance gene encoded in the transferable R-plasmid of a fish pathogen, Pasteurella piscicida. Microbiol Immunol 40:665–669PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kim MJ, Hirono I, Kurokawa K, Maki T, Hawke J, Kondo H, Santos MD, Aoki T (2008) Complete DNA sequence and analysis of the transferable multiple-drug resistance plasmids (R plasmids) from Photobacterium damselae subsp. piscicida isolates collected in Japan and the United States. Antimicrob Agents Chemother 52:606–611PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kothary MH, Kreger AS (1985) Purification and characterization of an extracellular cytolysin produced by Vibrio damsela. Infect Immun 49:25–31PubMedPubMedCentralGoogle Scholar
  37. Kreger AS (1984) Cytolytic activity and virulence of Vibrio damsela. Infect Immun 44:326–331PubMedPubMedCentralGoogle Scholar
  38. Kreger AS, Bernheimer AW, Etkin LA, Daniel LW (1987) Phospholipase D activity of Vibrio damsela cytolysin and its interaction with sheep erythrocytes. Infect Immun 55:3209–3212PubMedPubMedCentralGoogle Scholar
  39. Kusuda R, Fukuda Y (1980) Agglutinating antibody titers and serum protein changes of yellowtail after inmunization with Pasteurella piscicida cells. Bull Jpn Soc Sci Fish 46:103–108Google Scholar
  40. Kusuda R, Salati F (1993) Major bacterial diseases affecting mariculture in Japan. Annu Rev Fish Dis 3:69–85CrossRefGoogle Scholar
  41. Le Roux F, Davis BM, Waldor MK (2011) Conserved small RNAs govern replication and incompatibility of a diverse new plasmid family from marine bacteria. Nucleic Acids Res 39:1004–1013PubMedCrossRefGoogle Scholar
  42. Li P, Leung PC, Gu J-D (2010) A new ColE1-like plasmid group revealed by comparative analysis of the replication proficient fragments of Vibrionaceae plasmids. J Microbiol Biotechnol 20:1163–1178CrossRefGoogle Scholar
  43. Li R, Ye L, Wong MHY, Zheng Z, Chan EWC, Chen S (2017) Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. J Antimicrob Chemother 72:2503–2506PubMedCrossRefGoogle Scholar
  44. Love M, Teebkenfisher D, Hose JE, Farmer JJ, Hickman FW, Fanning GR (1981) Vibrio damsela, a marine bacterium, causes skin ulcers on the damselfish Chromis punctipinnis. Science 214:1139–1140PubMedCrossRefGoogle Scholar
  45. Lozano-León A, Osorio CR, Núnez S, Martínez-Urtaza J, Magariños B (2003) Occurrence of Photobacterium damselae subsp. damselae in bivalve molluscs from Northwest Spain. Bull Eur Assoc Fish Pathol 23:40–44Google Scholar
  46. Magariños B, Romalde JL, Bandín I, Fouz B, Toranzo AE (1992) Phenotipic, antigenic and molecular characterization of Pasteurella piscicida strains isolated from fish. Appl Environ Microbiol 58:3316–3322PubMedPubMedCentralGoogle Scholar
  47. Magariños B, Toranzo AE, Romalde JL (1996) Phenotypic and pathobiological characteristics of Pasteurella piscicida. Annu Rev Fish Dis 6:41–64CrossRefGoogle Scholar
  48. Magariños B, Romalde JL, López-Romalde S, Moriñigo MA, Toranzo AE (2003) Pathobiological characterisation of Photobacterium damselae subsp. piscicida isolated from cultured sole (Solea senegalensis). Bull Eur Assoc Fish Pathol 23:183–190Google Scholar
  49. Matanza XM, Osorio CR (2018) Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS One 13:e0210118PubMedPubMedCentralCrossRefGoogle Scholar
  50. Morii H, Hayashi N, Uramoto K (2003) Cloning and nucleotide sequence analysis of the chloramphenicol resistance gene on conjugative R plasmids from the fish pathogen Photobacterium damselae subsp. piscicida. Dis Aquat Org 53:107–113PubMedCrossRefGoogle Scholar
  51. Morris JG, Wilson R, Hollis DG, Weaver RE, Miller HG, Tacket CO, Hickman FW, Blake PA (1982) Illness caused by Vibrio damsela and Vibrio hollisae. Lancet 319:1294–1297CrossRefGoogle Scholar
  52. Nonaka L, Maruyama F, Miyamoto M, Miyakoshi M, Kurokawa K, Masuda M (2012) Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. Microbes Environ 27:263–272PubMedPubMedCentralCrossRefGoogle Scholar
  53. Nonaka L, Maruyama F, Onishi Y, Kobayashi T, Ogura Y, Hayashi T, Suzuki S, Masuda M (2014) Various pAQU plasmids possibly contribute to disseminate tetracycline resistance gene tet(M ) among marine bacterial community. Front Microbiol 5:152PubMedPubMedCentralCrossRefGoogle Scholar
  54. Nonaka L, Maruyama F, Suzuki S, Masuda M (2015) Novel macrolide-resistance genes, mef(C) and mph(G ), carried by plasmids from Vibrio and Photobacterium isolated from sediment and seawater of a coastal aquaculture site. Lett Appl Microbiol 61:1–6PubMedCrossRefGoogle Scholar
  55. Osorio CR, Collins MD, Toranzo AE, Barja JL, Romalde JL (1999) 16S rRNA gene sequence analysis of Photobacterium damselae and nested PCR method for rapid detection of the causative agent of fish pasteurellosis. Appl Environ Microbiol 65:2942–2946PubMedPubMedCentralGoogle Scholar
  56. Osorio CR, Juiz-Rio S, Lemos ML (2006) A siderophore biosynthesis gene cluster from the fish pathogen Photobacterium damselae subsp. piscicida is structurally and functionally related to the Yersinia high-pathogenicity island. Microbiology 152:3327–3341PubMedCrossRefGoogle Scholar
  57. Osorio CR, Marrero J, Wozniak RA, Lemos ML, Burrus V, Waldor MK (2008) Genomic and functional analysis of ICEPdaSpa1, a fish-pathogen-derived SXT-related integrating conjugative element that can mobilize a virulence plasmid. J Bacteriol 190:3353–3361PubMedPubMedCentralCrossRefGoogle Scholar
  58. Osorio CR, Rivas AJ, Balado M, Fuentes-Monteverde JC, Rodríguez J, Jiménez C, Lemos ML, Waldor MK (2015) A transmissible plasmid-borne pathogenicity island encodes piscibactin biosynthesis in the fish pathogen Photobacterium damselae subsp. piscicida. Appl Environ Microbiol 81:5867–5879PubMedPubMedCentralCrossRefGoogle Scholar
  59. Osorio CR, Vences A, Matanza XM, Terceti MS (2018) Photobacterium damselae subsp. damselae, a generalist pathogen with unique virulence factors and high genetic diversity. J Bacteriol 200:e00002–e00018PubMedPubMedCentralCrossRefGoogle Scholar
  60. Pedersen K, Dalsgaard I, Larsen JL (1997) Vibrio damsela associated with diseased fish in Denmark. Appl Environ Microbiol 63:3711–3715PubMedPubMedCentralGoogle Scholar
  61. Pedersen K, Skall HF, Lassen-Nielsen AM, Bjerrum L, Olesen NJ (2009) Photobacterium damselae subsp. damselae, an emerging pathogen in Danish rainbow trout, Oncorhynchus mykiss (Walbaum), mariculture. J Fish Dis 32:465–472PubMedCrossRefGoogle Scholar
  62. Pereira LM, Pinto RD, Silva DS, Moreira AR, Beitzinger C, Oliveira P, Sampaio P, Benz R, Azevedo JE, dos Santos NM, do Vale A (2014) Intracellular trafficking of AIP56, an NF-κB cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun 82:5270–5285PubMedPubMedCentralCrossRefGoogle Scholar
  63. Puentes B, Balado M, Bermudez-Crespo J, Osorio CR, Lemos ML (2017) A proteomic analysis of the iron response of Photobacterium damselae subsp. damselae reveals metabolic adaptations to iron levels changes and novel potential virulence factors. Vet Microbiol 201:257–264PubMedCrossRefGoogle Scholar
  64. Rivas AJ, Balado M, Lemos ML, Osorio CR (2011) The Photobacterium damselae subsp. damselae hemolysins damselysin and HlyA are encoded within a new virulence plasmid. Infect Immun 79:4617–4627PubMedPubMedCentralCrossRefGoogle Scholar
  65. Rivas AJ, Lemos ML, Osorio CR (2013a) Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front Microbiol 4:283PubMedPubMedCentralCrossRefGoogle Scholar
  66. Rivas AJ, Balado M, Lemos ML, Osorio CR (2013b) Synergistic and additive effects of chromosomal and plasmid-encoded hemolysins contribute to hemolysis and virulence in Photobacterium damselae subsp. damselae. Infect Immun 81:3287–3299PubMedPubMedCentralCrossRefGoogle Scholar
  67. Rivas AJ, Labella A, Borrego JJ, Lemos ML, Osorio CR (2014) Evidences for horizontal gene transfer, gene duplication and genetic variation as driving forces of the diversity of haemolytic phenotypes in Photobacterium damselae subsp. damselae. FEMS Microbiol Lett 355:152–162PubMedCrossRefGoogle Scholar
  68. Rivas AJ, Von Hoven G, Neukirch C, Meyenburg M, Qin Q, Füser S, Boller K, Lemos ML, Osorio CR, Husmann M (2015a) Phobalysin, a small ß-pore-forming toxin of Photobacterium damselae subsp. damselae. Infect Immun 83:4335–4348PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rivas AJ, Vences A, Husmann M, Lemos ML, Osorio CR (2015b) Photobacterium damselae subsp. damselae major virulence factors Dly, plasmid encoded HlyA, and chromosome-encoded HlyA are secreted via the type II secretion system. Infect Immun 83:1246–1256PubMedPubMedCentralCrossRefGoogle Scholar
  70. Rodríguez-Blanco A, Lemos ML, Osorio CR (2012) Integrating conjugative elements (ICEs) as vectors of antibiotic, mercury and quaternary ammonium compounds resistance in marine aquaculture environments. Antimicrob Agents Chemother 56:2619–2626PubMedPubMedCentralCrossRefGoogle Scholar
  71. Serracca L, Ercolini C, Rossini I, Battistini R, Giorgi I, Prearo M (2011) Occurrence of both subspecies of Photobacterium damselae in mullets collected in the river Magra (Italy). Can J Microbiol 57:437–440PubMedCrossRefGoogle Scholar
  72. Silva MT, Dos Santos NM, do Vale A (2010) AIP56: a novel bacterial apoptogenic toxin. Toxins (Basel) 2:905–918CrossRefGoogle Scholar
  73. Silva DS, Pereira LM, Moreira AR, Ferreira-da-Silva F, Brito RM, Faria TQ, Zornetta I, Montecucco C, Oliveira P, Azevedo JE, Pereira PJ, Macedo-Ribeiro S, do Vale A, dos Santos NM (2013) The apoptogenic toxin AIP56 is a metalloprotease A-B toxin that cleaves NF-κb P65. PLoS Pathog 9:e1003128PubMedPubMedCentralCrossRefGoogle Scholar
  74. Smith SK, Sutton DC, Fuerst JA, Reichelt JL (1991) Evaluation of the genus Listonella and reassignment of Listonella damsela (Love et al.) MacDonell and Colwell to the genus Photobacterium as Photobacterium damsela comb. nov. with an emended description. Int J Syst Bacteriol 41:529–534PubMedCrossRefGoogle Scholar
  75. Snieszko SF, Bullock GL, Hollis E, Boone JG (1964) Pasteurella sp. from an epizootic of white perch (Roccus americanus) in Chesapeake Bay tidewater areas. J Bacteriol 88:1814–1815PubMedPubMedCentralGoogle Scholar
  76. Souto A, Montaos MA, Rivas AJ, Balado M, Osorio CR, Rodríguez J, Lemos ML, Jiménez C (2012) Structure and biosynthetic assembly of Piscibactin, a new siderophore from Photobacterium damselae subsp. piscicida, predicted from genome analysis. Eur J Org Chem 2012:5693–5700CrossRefGoogle Scholar
  77. Terceti MS, Ogut H, Osorio CR (2016) Photobacterium damselae subsp. damselae, an emerging fish pathogen in the Black Sea: evidences of a multiclonal origin. Appl Environ Microbiol 82:3736–3745PubMedPubMedCentralCrossRefGoogle Scholar
  78. Terceti MS, Vences A, Matanza XM, Dalsgaard I, Pedersen K, Osorio CR (2018) Molecular epidemiology of Photobacterium damselae subsp. damselae outbreaks in marine rainbow trout farms reveals extensive horizontal gene transfer and high genetic diversity. Front Microbiol 9:2155PubMedPubMedCentralCrossRefGoogle Scholar
  79. Thyssen A, Grise L, van Houdt R, Ollevier F (1998) Phenotypic characterization of the marine pathogen Photobacterium damselae subsp. piscicida. Int J Syst Bacteriol 48:1145–1151PubMedCrossRefGoogle Scholar
  80. Toranzo AE, Barja JL, Hetrick FM (1982) Survival of Vibrio anguillarum and Pasteurella piscicida in estuarine and fresh waters. Bull Eur Assoc Fish Pathol 3:43–45Google Scholar
  81. Toranzo AE, Barreiro S, Casal JF, Figueras A, Magariños B, Barja JL (1991) Pasteurellosis in cultured gilthead seabram (Sparus aurata): first report in Spain. Aquaculture 99:1–15CrossRefGoogle Scholar
  82. Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246:37–61CrossRefGoogle Scholar
  83. Vences A, Rivas AJ, Lemos ML, Husmann M, Osorio CR (2017) Chromosome-encoded hemolysin, phospholipase, and collagenase in plasmidless isolates of Photobacterium damselae subsp. damselae contribute to virulence for fish. Appl Environ Microbiol 83:e00401–e00417PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Microbiology and Parasitology, Institute of AquacultureUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations