Advertisement

Horizontal Gene Transfer and Genome Evolution in the Phylum Actinobacteria

  • Cooper J. Park
  • Joshua T. Smith
  • Cheryl P. AndamEmail author
Chapter

Abstract

Actinobacteria constitute one of the largest phyla in the bacterial domain, with many species known for their large genome sizes and high G + C content. Members of this phylum exhibit a wide range of morphological, physiological, and metabolic properties and are ubiquitously distributed in diverse ecological niches. The phylum includes pathogens, symbionts of plants and invertebrates, gastrointestinal commensals, and free-living bacteria. Many species are well known for their ability to produce a plethora of natural products relevant to agriculture, biotechnology, and medicine, including majority of naturally derived antibiotics widely used in clinics. In this chapter, we discuss recent advances that highlight the role of horizontal gene transfer (HGT) in the evolutionary history, genomic structure, and ecological diversity of Actinobacteria, with emphasis on HGT between species and between phyla. We highlight genome studies that describe how HGT has contributed to the success of promiscuous antibiotic producers as well as the pathogens that they target. We conclude with how methods in population genomics can be used to elucidate the impacts of selective pressures and environmental changes on rates and patterns of HGT in various Actinobacteria species and populations.

Keywords

Horizontal gene transfer Genome Evolution Actinobacteria Biosynthetic gene clusters 

References

  1. Anastasi E, MacArthur I, Scortti M et al (2016) Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol 8:3140–3148.  https://doi.org/10.1093/gbe/evw222 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andam CP, Gogarten JP (2011) Biased gene transfer in microbial evolution. Nat Rev Microbiol 9:543–555.  https://doi.org/10.1038/nrmicro2593 CrossRefPubMedGoogle Scholar
  3. Andam CP, Choudoir MJ, Vinh Nguyen A et al (2016) Contributions of ancestral inter-species recombination to the genetic diversity of extant Streptomyces lineages. ISME J 10:1731–1741.  https://doi.org/10.1038/ismej.2015.230 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anderson I, Abt B, Lykidis A et al (2012) Genomics of aerobic cellulose utilization systems in Actinobacteria. PLoS One 7:e39331.  https://doi.org/10.1371/journal.pone.0039331 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Antony-Babu S, Stien D, Eparvier V et al (2017) Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences. Sci Rep 7:11089.  https://doi.org/10.1038/s41598-017-11363-1 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bapteste E, Boucher Y (2009) Epistemological impacts of horizontal gene transfer on classification in microbiology. Methods Mol Biol 532:55–72.  https://doi.org/10.1007/978-1-60327-853-9_4 CrossRefPubMedGoogle Scholar
  7. Baraúna RA, Ramos RTJ, Veras AAO et al (2017) Assessing the genotypic differences between strains of Corynebacterium pseudotuberculosis biovar equi through comparative genomics. PLoS One 12:e0170676.  https://doi.org/10.1371/journal.pone.0170676 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barka EA, Vatsa P, Sanchez L et al (2015) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43.  https://doi.org/10.1128/MMBR.00019-15 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bĕhal V (2000) Bioactive products from Streptomyces. Adv Appl Microbiol 47:113–156CrossRefGoogle Scholar
  10. Bell KS, Philp JC, Aw DW, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210CrossRefGoogle Scholar
  11. Bentley SD, Chater KF, Cerdeño-Tárraga A-M et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147.  https://doi.org/10.1038/417141a CrossRefPubMedGoogle Scholar
  12. Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 70:2276–2280CrossRefGoogle Scholar
  13. Bernard K (2012) The genus corynebacterium and other medically relevant coryneform-like bacteria. J Clin Microbiol 50:3152–3158.  https://doi.org/10.1128/JCM.00796-12 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bobay L-M, Ochman H (2018) Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol Biol 18:153.  https://doi.org/10.1186/s12862-018-1272-4 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boc A, Diallo AB, Makarenkov V (2012) T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res 40:W573–W579.  https://doi.org/10.1093/nar/gks485 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bolotin E, Hershberg R (2017) Horizontally acquired genes are often shared between closely related bacterial species. Front Microbiol 8:1536.  https://doi.org/10.3389/fmicb.2017.01536 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Book AJ, Lewin GR, McDonald BR et al (2014) Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Appl Environ Microbiol 80:4692–4701.  https://doi.org/10.1128/AEM.01133-14 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Boritsch EC, Khanna V, Pawlik A et al (2016) Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc Natl Acad Sci U S A 113:9876–9881.  https://doi.org/10.1073/pnas.1604921113 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bose U, Hewavitharana AK, Vidgen ME et al (2014) Discovering the recondite secondary metabolome spectrum of Salinispora species: a study of inter-species diversity. PLoS One 9:e91488.  https://doi.org/10.1371/journal.pone.0091488 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bown L, Li Y, Berrué F et al (2017) Biosynthesis and evolution of coronafacoyl phytotoxin production in the common scab pathogen Streptomyces scabies. Appl Environ Microbiol 83(19):AEM.01169-17.  https://doi.org/10.1128/AEM.01169-17 CrossRefGoogle Scholar
  21. Bruns H, Crüsemann M, Letzel A-C et al (2018) Function-related replacement of bacterial siderophore pathways. ISME J 12:320–329.  https://doi.org/10.1038/ismej.2017.137 CrossRefPubMedGoogle Scholar
  22. Choudoir MJ, Pepe-Ranney C, Buckley DH (2018) Diversification of secondary metabolite biosynthetic gene clusters coincides with lineage divergence in Streptomyces. Antibiotics (Basel) 7:12.  https://doi.org/10.3390/antibiotics7010012 CrossRefGoogle Scholar
  23. Comas I, Hailu E, Kiros T et al (2015) Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human tuberculosis in sub-Saharan Africa. Curr Biol 25:3260–3266.  https://doi.org/10.1016/j.cub.2015.10.061 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Corander J, Connor TR, O’Dwyer CA et al (2012) Population structure in the Neisseria, and the biological significance of fuzzy species. J R Soc Interface 9:1208–1215.  https://doi.org/10.1098/rsif.2011.0601 CrossRefPubMedGoogle Scholar
  25. Creason AL, Vandeputte OM, Savory EA et al (2014) Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLoS One 9:e101996.  https://doi.org/10.1371/journal.pone.0101996 CrossRefPubMedPubMedCentralGoogle Scholar
  26. D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377.  https://doi.org/10.1126/science.1120800 CrossRefPubMedGoogle Scholar
  27. D’Costa VM, King CE, Kalan L et al (2011) Antibiotic resistance is ancient. Nature 477:457–461.  https://doi.org/10.1038/nature10388 CrossRefPubMedGoogle Scholar
  28. Davis KM, Isberg RR (2016) Defining heterogeneity within bacterial populations via single cell approaches. BioEssays 38:782–790.  https://doi.org/10.1002/bies.201500121 CrossRefPubMedGoogle Scholar
  29. De Maayer P, Chan WY, Rubagotti E et al (2014) Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics 15:404.  https://doi.org/10.1186/1471-2164-15-404 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Deng M-R, Guo J, Li X et al (2011) Granaticins and their biosynthetic gene cluster from Streptomyces vietnamensis: evidence of horizontal gene transfer. Antonie Van Leeuwenhoek 100:607–617.  https://doi.org/10.1007/s10482-011-9615-9 CrossRefPubMedGoogle Scholar
  31. Derbyshire KM, Gray TA (2014) Distributive conjugal transfer: new insights into horizontal gene transfer and genetic exchange in mycobacteria. Microbiol Spectr 2:MGM2-0022–MGM2-2013.  https://doi.org/10.1128/microbiolspec.MGM2-0022-2013 CrossRefGoogle Scholar
  32. Doroghazi JR, Buckley DH (2014) Intraspecies comparison of Streptomyces pratensis genomes reveals high levels of recombination and gene conservation between strains of disparate geographic origin. BMC Genomics 15:970.  https://doi.org/10.1186/1471-2164-15-970 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Egan S, Wiener P, Kallifidas D, Wellington EM (2001) Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters. Antonie Van Leeuwenhoek 79:127–133CrossRefGoogle Scholar
  35. Embley TM, Stackebrandt E (1994) The molecular phylogeny and systematics of the actinomycetes. Annu Rev Microbiol 48:257–289.  https://doi.org/10.1146/annurev.mi.48.100194.001353 CrossRefPubMedGoogle Scholar
  36. Eustáquio AS, Nam S-J, Penn K et al (2011) The discovery of salinosporamide K from the marine bacterium “Salinispora pacifica” by genome mining gives insight into pathway evolution. Chembiochem 12:61–64.  https://doi.org/10.1002/cbic.201000564 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49.  https://doi.org/10.1038/nrmicro1968 CrossRefPubMedGoogle Scholar
  38. Forsberg KJ, Reyes A, Wang B et al (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111.  https://doi.org/10.1126/science.1220761 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Francis I, De Keyser A, De Backer P et al (2012) pFiD188, the linear virulence plasmid of Rhodococcus fascians D188. Mol Plant-Microbe Interact 25:637–647.  https://doi.org/10.1094/MPMI-08-11-0215 CrossRefPubMedGoogle Scholar
  40. Freel KC, Nam S-J, Fenical W, Jensen PR (2011) Evolution of secondary metabolite genes in three closely related marine actinomycete species. Appl Environ Microbiol 77:7261–7270.  https://doi.org/10.1128/AEM.05943-11 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Fullmer MS, Soucy SM, Gogarten JP (2015) The pan-genome as a shared genomic resource: mutual cheating, cooperation and the black queen hypothesis. Front Microbiol 6:728.  https://doi.org/10.3389/fmicb.2015.00728 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Funke G, von Graevenitz A, Clarridge JE, Bernard KA (1997) Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10:125–159CrossRefGoogle Scholar
  43. Gagneux S (2018) Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 16:202–213.  https://doi.org/10.1038/nrmicro.2018.8 CrossRefPubMedGoogle Scholar
  44. Gallagher KA, Jensen PR (2015) Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade. BMC Genomics 16:960.  https://doi.org/10.1186/s12864-015-2110-3 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Garcia SL, Stevens SLR, Crary B et al (2018) Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations. ISME J 12:742–755.  https://doi.org/10.1038/s41396-017-0001-0 CrossRefPubMedGoogle Scholar
  46. Godfroid M, Dagan T, Kupczok A (2018) Recombination signal in Mycobacterium tuberculosis stems from reference-guided assemblies and alignment artefacts. Genome Biol Evol 10:1920–1926.  https://doi.org/10.1093/gbe/evy143 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238CrossRefGoogle Scholar
  48. Goh E-B, Yim G, Tsui W et al (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A 99:17025–17030.  https://doi.org/10.1073/pnas.252607699 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gray TA, Krywy JA, Harold J et al (2013) Distributive conjugal transfer in mycobacteria generates progeny with meiotic-like genome-wide mosaicism, allowing mapping of a mating identity locus. PLoS Biol 11:e1001602.  https://doi.org/10.1371/journal.pbio.1001602 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Greule A, Marolt M, Deubel D et al (2017) Wide distribution of Foxicin biosynthetic gene clusters in Streptomyces strains - an unusual secondary metabolite with various properties. Front Microbiol 8:221.  https://doi.org/10.3389/fmicb.2017.00221 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in gram-negative and gram-positive bacteria. Mol Microbiol 107:455–471.  https://doi.org/10.1111/mmi.13896 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  53. Gupta RS, Lo B, Son J (2018) Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 9:67.  https://doi.org/10.3389/fmicb.2018.00067 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hall JPJ, Brockhurst MA, Harrison E (2017) Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos Trans R Soc Lond Ser B Biol Sci 372:20160424.  https://doi.org/10.1098/rstb.2016.0424 CrossRefGoogle Scholar
  55. Hanage WP, Fraser C, Spratt BG (2005) Fuzzy species among recombinogenic bacteria. BMC Biol 3:6.  https://doi.org/10.1186/1741-7007-3-6 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Harrison J, Studholme DJ (2014) Recently published Streptomyces genome sequences. Microb Biotechnol 7:373–380.  https://doi.org/10.1111/1751-7915.12143 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hershberg R, Lipatov M, Small PM et al (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6:e311.  https://doi.org/10.1371/journal.pbio.0060311 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hoff G, Bertrand C, Piotrowski E et al (2018) Genome plasticity is governed by double strand break DNA repair in Streptomyces. Sci Rep 8:5272.  https://doi.org/10.1038/s41598-018-23622-w CrossRefPubMedPubMedCentralGoogle Scholar
  59. Holmes RK (2000) Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 181(Suppl 1):S156–S167.  https://doi.org/10.1086/315554 CrossRefPubMedGoogle Scholar
  60. Hopwood DA (2007) How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Mol Microbiol 63:937–940.  https://doi.org/10.1111/j.1365-2958.2006.05584.x CrossRefPubMedGoogle Scholar
  61. Ikeda H, Ishikawa J, Hanamoto A et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531.  https://doi.org/10.1038/nbt820 CrossRefPubMedGoogle Scholar
  62. Jensen PR, Mafnas C (2006) Biogeography of the marine actinomycete Salinispora. Environ Microbiol 8:1881–1888.  https://doi.org/10.1111/j.1462-2920.2006.01093.x CrossRefPubMedGoogle Scholar
  63. Jensen PR, Williams PG, Oh D-C et al (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152.  https://doi.org/10.1128/AEM.01891-06 CrossRefPubMedGoogle Scholar
  64. Jensen PR, Moore BS, Fenical W (2015) The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep 32:738–751.  https://doi.org/10.1039/c4np00167b CrossRefPubMedPubMedCentralGoogle Scholar
  65. Jiang X, Ellabaan MMH, Charusanti P et al (2017) Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun 8:15784.  https://doi.org/10.1038/ncomms15784 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Joynt R, Seipke RF (2018) A phylogenetic and evolutionary analysis of antimycin biosynthesis. Microbiology 164:28–39.  https://doi.org/10.1099/mic.0.000572 CrossRefPubMedGoogle Scholar
  67. Kim B-J, Kim B-R, Kook Y-H, Kim B-J (2017a) Role of the DNA mismatch repair gene MutS4 in driving the evolution of Mycobacterium yongonense type I via homologous recombination. Front Microbiol 8:2578.  https://doi.org/10.3389/fmicb.2017.02578 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kim B-J, Kim G-N, Kim B-R et al (2017b) Phylogenetic analysis of Mycobacterium massiliense strains having recombinant rpoB gene laterally transferred from Mycobacterium abscessus. PLoS One 12:e0179237.  https://doi.org/10.1371/journal.pone.0179237 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Klümper U, Riber L, Dechesne A et al (2015) Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J 9:934–945.  https://doi.org/10.1038/ismej.2014.191 CrossRefPubMedGoogle Scholar
  70. Kutzner HJ, Waksman SA (1959) Streptomyces coelicolor Muller and Streptomyces violaceoruber Waksman and Curtis, two distinctly different organisms. J Bacteriol 78:528PubMedPubMedCentralGoogle Scholar
  71. Lee RS, Radomski N, Proulx J-F et al (2015) Population genomics of Mycobacterium tuberculosis in the Inuit. Proc Natl Acad Sci U S A 112:13609–13614.  https://doi.org/10.1073/pnas.1507071112 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Letek M, Ocampo-Sosa AA, Sanders M et al (2008) Evolution of the Rhodococcus equi vap pathogenicity island seen through comparison of host-associated vapA and vapB virulence plasmids. J Bacteriol 190:5797–5805.  https://doi.org/10.1128/JB.00468-08 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Letek M, González P, Macarthur I et al (2010) The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6:e1001145.  https://doi.org/10.1371/journal.pgen.1001145 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Letzel A-C, Li J, Amos GCA et al (2017) Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environ Microbiol 19:3660–3673.  https://doi.org/10.1111/1462-2920.13867 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Levillain F, Poquet Y, Mallet L et al (2017) Horizontal acquisition of a hypoxia-responsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation. PLoS Pathog 13:e1006752.  https://doi.org/10.1371/journal.ppat.1006752 CrossRefPubMedPubMedCentralGoogle Scholar
  76. MacArthur I, Anastasi E, Alvarez S et al (2017) Comparative genomics of Rhodococcus equi virulence plasmids indicates host-driven evolution of the vap Pathogenicity Island. Genome Biol Evol 9:1241–1247.  https://doi.org/10.1093/gbe/evx057 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mandlik A, Swierczynski A, Das A, Ton-That H (2007) Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 64:111–124.  https://doi.org/10.1111/j.1365-2958.2007.05630.x CrossRefPubMedPubMedCentralGoogle Scholar
  78. Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2014) Pharmaceutically active secondary metabolites of marine Actinobacteria. Microbiol Res 169:262–278.  https://doi.org/10.1016/j.micres.2013.07.014 CrossRefPubMedGoogle Scholar
  79. McDonald BR, Currie CR (2017) Lateral gene transfer dynamics in the ancient bacterial genus streptomyces. MBio 8:e00644-17.  https://doi.org/10.1128/mBio.00644-17 CrossRefPubMedPubMedCentralGoogle Scholar
  80. McInerney JO, McNally A, O’Connell MJ (2017) Why prokaryotes have pangenomes. Nat Microbiol 2:17040.  https://doi.org/10.1038/nmicrobiol.2017.40 CrossRefPubMedGoogle Scholar
  81. McKean SC, Davies JK, Moore RJ (2007) Expression of phospholipase D, the major virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple environmental factors and plays a role in macrophage death. Microbiology 153:2203–2211.  https://doi.org/10.1099/mic.0.2007/005926-0 CrossRefPubMedGoogle Scholar
  82. Medini D, Donati C, Tettelin H et al (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594.  https://doi.org/10.1016/j.gde.2005.09.006 CrossRefPubMedGoogle Scholar
  83. Miyoshi T, Miyairi N, Aoki H et al (1972) Bicyclomycin, a new antibiotic. I. Taxonomy, isolation and characterization. J Antibiot 25:569–575CrossRefGoogle Scholar
  84. Mortimer TD, Pepperell CS (2014) Genomic signatures of distributive conjugal transfer among mycobacteria. Genome Biol Evol 6:2489–2500.  https://doi.org/10.1093/gbe/evu175 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM (2018) Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J 12:185–198.  https://doi.org/10.1038/ismej.2017.156 CrossRefPubMedGoogle Scholar
  86. Nouioui I, Carro L, García-López M et al (2018) Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 9:2007.  https://doi.org/10.3389/fmicb.2018.02007 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Nudel K, Zhao X, Basu S et al (2018) Genomics of Corynebacterium striatum, an emerging multidrug-resistant pathogen of immunocompromised patients. Clin Microbiol Infect 24:1016.e7–1016.e13.  https://doi.org/10.1016/j.cmi.2017.12.024 CrossRefGoogle Scholar
  88. Otchere ID, Coscollá M, Sánchez-Busó L et al (2018) Comparative genomics of Mycobacterium africanum lineage 5 and lineage 6 from Ghana suggests distinct ecological niches. Sci Rep 8:11269.  https://doi.org/10.1038/s41598-018-29620-2 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Panda A, Drancourt M, Tuller T, Pontarotti P (2018) Genome-wide analysis of horizontally acquired genes in the genus Mycobacterium. Sci Rep 8:14817.  https://doi.org/10.1038/s41598-018-33261-w CrossRefPubMedPubMedCentralGoogle Scholar
  90. Papke RT, Zhaxybayeva O, Feil EJ et al (2007) Searching for species in haloarchaea. Proc Natl Acad Sci U S A 104:14092–14097.  https://doi.org/10.1073/pnas.0706358104 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Penn K, Jenkins C, Nett M et al (2009) Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J 3:1193–1203.  https://doi.org/10.1038/ismej.2009.58 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Pertry I, Václavíková K, Depuydt S et al (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci U S A 106:929–934.  https://doi.org/10.1073/pnas.0811683106 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Podell S, Gaasterland T, Allen EE (2008) A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm. BMC Bioinformatics 9:419.  https://doi.org/10.1186/1471-2105-9-419 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Putnam ML, Miller ML (2007) Rhodococcus fascians in herbaceous perennials. Plant Dis 91:1064–1076.  https://doi.org/10.1094/PDIS-91-9-1064 CrossRefPubMedGoogle Scholar
  95. Reva O, Korotetskiy I, Ilin A (2015) Role of the horizontal gene exchange in evolution of pathogenic mycobacteria. BMC Evol Biol 15(Suppl 1):S2.  https://doi.org/10.1186/1471-2148-15-S1-S2 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Ruiz JC, D’Afonseca V, Silva A et al (2011) Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One 6:e18551.  https://doi.org/10.1371/journal.pone.0018551 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Sakaguchi K (1990) Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses. Microbiol Rev 54:66–74PubMedPubMedCentralGoogle Scholar
  98. Sánchez-Romero MA, Casadesús J (2014) Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc Natl Acad Sci U S A 111:355–360.  https://doi.org/10.1073/pnas.1316084111 CrossRefPubMedGoogle Scholar
  99. Sanchini A, Semmler T, Mao L et al (2016) A hypervariable genomic island identified in clinical and environmental Mycobacterium avium subsp. hominissuis isolates from Germany. Int J Med Microbiol 306:495–503.  https://doi.org/10.1016/j.ijmm.2016.07.001 CrossRefPubMedGoogle Scholar
  100. Sangal V, Hoskisson PA (2016) Evolution, epidemiology and diversity of Corynebacterium diphtheriae: new perspectives on an old foe. Infect Genet Evol 43:364–370.  https://doi.org/10.1016/j.meegid.2016.06.024 CrossRefPubMedGoogle Scholar
  101. Sapriel G, Konjek J, Orgeur M et al (2016) Genome-wide mosaicism within Mycobacterium abscessus: evolutionary and epidemiological implications. BMC Genomics 17:118.  https://doi.org/10.1186/s12864-016-2448-1 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Schatz A, Bugle E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative Bacteria.∗†. Proc Soc Exp Biol Med 55:66–69.  https://doi.org/10.3181/00379727-55-14461 CrossRefGoogle Scholar
  103. Sechler AJ, Tancos MA, Schneider DJ et al (2017) Whole genome sequence of two Rathayibacter toxicus strains reveals a tunicamycin biosynthetic cluster similar to Streptomyces chartreusis. PLoS One 12:e0183005.  https://doi.org/10.1371/journal.pone.0183005 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Seipke RF (2015) Strain-level diversity of secondary metabolism in Streptomyces albus. PLoS One 10:e0116457.  https://doi.org/10.1371/journal.pone.0116457 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Sengupta S, Chattopadhyay MK, Grossart H-P (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:47.  https://doi.org/10.3389/fmicb.2013.00047 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Sharaf A, Mercati F, Elmaghraby I et al (2017) Functional and comparative genome analysis of novel virulent actinophages belonging to Streptomyces flavovirens. BMC Microbiol 17:51.  https://doi.org/10.1186/s12866-017-0940-7 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Sheppard SK, Guttman DS, Fitzgerald JR (2018) Population genomics of bacterial host adaptation. Nat Rev Genet 19:549–565.  https://doi.org/10.1038/s41576-018-0032-z CrossRefPubMedGoogle Scholar
  108. Silby MW, Winstanley C, Godfrey SAC et al (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680.  https://doi.org/10.1111/j.1574-6976.2011.00269.x CrossRefPubMedGoogle Scholar
  109. Skordalakes E, Brogan AP, Park BS et al (2005) Structural mechanism of inhibition of the rho transcription termination factor by the antibiotic bicyclomycin. Structure 13:99–109.  https://doi.org/10.1016/j.str.2004.10.013 CrossRefPubMedGoogle Scholar
  110. Snel B, Bork P, Huynen MA (2002) Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res 12:17–25.  https://doi.org/10.1101/gr.176501 CrossRefPubMedGoogle Scholar
  111. Stackebrandt E, Schumann P (2006) Introduction to the taxonomy of Actinobacteria. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, Archaea. Bacteria: Firmicutes, Actinomycetes, vol Volume 3. Springer, New York, NY, pp 297–321CrossRefGoogle Scholar
  112. Stucki D, Brites D, Jeljeli L et al (2016) Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 48:1535–1543.  https://doi.org/10.1038/ng.3704 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Takhaveev V, Heinemann M (2018) Metabolic heterogeneity in clonal microbial populations. Curr Opin Microbiol 45:30–38.  https://doi.org/10.1016/j.mib.2018.02.004 CrossRefPubMedGoogle Scholar
  114. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: American Mathematical Society: lectures on mathematics in the life sciences. American Mathematical Society, Providence, RI, pp 57–86Google Scholar
  115. Thoma L, Muth G (2015) The conjugative DNA-transfer apparatus of Streptomyces. Int J Med Microbiol 305:224–229.  https://doi.org/10.1016/j.ijmm.2014.12.020 CrossRefPubMedGoogle Scholar
  116. Thoma L, Dobrowinski H, Finger C et al (2015) A multiprotein DNA translocation complex directs intramycelial plasmid spreading during Streptomyces conjugation. MBio 6:e02559–e02514.  https://doi.org/10.1128/mBio.02559-14 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Tolba S, Egan S, Kallifidas D, Wellington EMH (2002) Distribution of streptomycin resistance and biosynthesis genes in streptomycetes recovered from different soil sites. FEMS Microbiol Ecol 42:269–276.  https://doi.org/10.1111/j.1574-6941.2002.tb01017.x CrossRefPubMedGoogle Scholar
  118. Topino S, Galati V, Grilli E, Petrosillo N (2010) Rhodococcus equi infection in HIV-infected individuals: case reports and review of the literature. AIDS Patient Care STDs 24:211–222.  https://doi.org/10.1089/apc.2009.0248 CrossRefPubMedGoogle Scholar
  119. Trejo WH (1970) An evaluation of some concepts and criteria used in the speciation of streptomycetes. Trans N Y Acad Sci 32:989–997.  https://doi.org/10.1111/j.2164-0947.1970.tb02991.x CrossRefGoogle Scholar
  120. Trost E, Blom J, Soares S de C et al (2012) Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 194:3199–3215.  https://doi.org/10.1128/JB.00183-12 CrossRefPubMedPubMedCentralGoogle Scholar
  121. True JR, Carroll SB (2002) Gene co-option in physiological and morphological evolution. Annu Rev Cell Dev Biol 18:53–80.  https://doi.org/10.1146/annurev.cellbio.18.020402.140619 CrossRefPubMedGoogle Scholar
  122. Uchiya K-I, Tomida S, Nakagawa T et al (2017) Comparative genome analyses of Mycobacterium avium reveal genomic features of its subspecies and strains that cause progression of pulmonary disease. Sci Rep 7:39750.  https://doi.org/10.1038/srep39750 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Udwary DW, Zeigler L, Asolkar RN et al (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci U S A 104:10376–10381.  https://doi.org/10.1073/pnas.0700962104 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Valero-Rello A, Hapeshi A, Anastasi E et al (2015) An invertron-like linear plasmid mediates intracellular survival and virulence in bovine isolates of Rhodococcus equi. Infect Immun 83:2725–2737.  https://doi.org/10.1128/IAI.00376-15 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Van Goethem MW, Pierneef R, Bezuidt OKI et al (2018) A reservoir of “historical” antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6:40.  https://doi.org/10.1186/s40168-018-0424-5 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Ventura M, Canchaya C, Tauch A et al (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548.  https://doi.org/10.1128/MMBR.00005-07 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Viana MVC, Figueiredo H, Ramos R et al (2017) Comparative genomic analysis between Corynebacterium pseudotuberculosis strains isolated from buffalo. PLoS One 12:e0176347.  https://doi.org/10.1371/journal.pone.0176347 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Vinatzer BA, Monteil CL, Clarke CR (2014) Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu Rev Phytopathol 52:19–43.  https://doi.org/10.1146/annurev-phyto-102313-045907 CrossRefPubMedGoogle Scholar
  129. Vior NM, Lacret R, Chandra G et al (2018) Discovery and biosynthesis of the antibiotic Bicyclomycin in distantly related bacterial classes. Appl Environ Microbiol 84:AEM.02828-17.  https://doi.org/10.1128/AEM.02828-17 CrossRefGoogle Scholar
  130. von Bargen K, Haas A (2009) Molecular and infection biology of the horse pathogen Rhodococcus equi. FEMS Microbiol Rev 33:870–891.  https://doi.org/10.1111/j.1574-6976.2009.00181.x CrossRefGoogle Scholar
  131. Whitaker RJ, Banfield JF (2006) Population genomics in natural microbial communities. Trends Ecol Evol 21:508–516.  https://doi.org/10.1016/j.tree.2006.07.001 CrossRefPubMedGoogle Scholar
  132. Williams M, Mizrahi V, Kana BD (2014) Molybdenum cofactor: a key component of Mycobacterium tuberculosis pathogenesis? Crit Rev Microbiol 40:18–29.  https://doi.org/10.3109/1040841X.2012.749211 CrossRefPubMedGoogle Scholar
  133. Wilson DJ (2012) Insights from genomics into bacterial pathogen populations. PLoS Pathog 8:e1002874.  https://doi.org/10.1371/journal.ppat.1002874 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Woodruff HB (2014) Selman A. Waksman, winner of the 1952 Nobel Prize for physiology or medicine. Appl Environ Microbiol 80:2–8.  https://doi.org/10.1128/AEM.01143-13 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Youngblut ND, Wirth JS, Henriksen JR et al (2015) Genomic and phenotypic differentiation among Methanosarcina mazei populations from Columbia River sediment. ISME J 9:2191–2205.  https://doi.org/10.1038/ismej.2015.31 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Zhou Z, Gu J, Li Y-Q, Wang Y (2012) Genome plasticity and systems evolution in Streptomyces. BMC Bioinformatics 13(Suppl 10):S8.  https://doi.org/10.1186/1471-2105-13-S10-S8 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Ziemert N, Lechner A, Wietz M et al (2014) Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci U S A 111:E1130–E1139.  https://doi.org/10.1073/pnas.1324161111 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Zumla A, George A, Sharma V et al (2015) The WHO 2014 global tuberculosis report—further to go. Lancet Glob Health 3:e10–e12.  https://doi.org/10.1016/S2214-109X(14)70361-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cooper J. Park
    • 1
  • Joshua T. Smith
    • 1
  • Cheryl P. Andam
    • 1
    Email author
  1. 1.Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamUSA

Personalised recommendations