Alternative Ways to Exchange DNA: Unconventional Conjugation Among Bacteria

  • Alba Blesa
  • José BerenguerEmail author


In addition to asexual reproduction, many prokaryotes contain specific apparatus evolved to exchange DNA through their envelopes by direct cell-to-cell contacts, allowing the horizontal transfer of genes, usually between phylogenetically related species in a sexual-like process. These contact-dependent processes are called “conjugation” to differentiate them from other ways of DNA acquisition like transformation, mediated by DNA import systems, or transduction, mediated by defective phages.

The conjugation apparatus has been studied in great detail in Proteobacteria. As described in previous chapters, it is based on a DNA mobilization apparatus that selects and cuts one of the strands of the transferred DNA in the donor strain at a specific site (oriT), binds a protein covalently to the 5′ extreme, and delivers the ssDNA–protein complex to a type IV secretion system (T4SS), which is responsible for its injection into the recipient cell. However, the absence of homologues to essential components of these elements in the genomes of many bacteria in which conjugation has been described to occur soon revealed the existence of unconventional conjugation mechanisms. Conjugation in Streptomyces involves the transfer of dsDNA instead of ssDNA and depends on a single DNA membrane translocase. In mycobacteria and mycoplasma, conjugation leads to the simultaneous transfer of large DNA fragments from several points in the chromosome and the generation of diverse chimeric progeny. Also in Thermus thermophilus, a transformation-dependent conjugation process allows the simultaneous transfer of every gene in a bidirectional process. In this chapter, we will focus on these so-called “unconventional” pathways of conjugation which, at the end, could be much more frequent as originally thought.


Conjugation Unconventional Thermus Streptomyces Mycoplasma Mycobacterium 



This work was supported by grant BIO2016-77031-R from the Spanish Ministry of Economy and Competitiveness and grant no. 685474 from Horizon 2020 research and innovation program of the European Union. An institutional grant from Fundación Ramón Areces to the CBMSO is also acknowledged.


  1. Alvarez L, Bricio C, Blesa A, Hidalgo A, Berenguer J (2014) Transferable denitrification capability of Thermus thermophilus. Appl Environ Microbiol 80(1):19–28PubMedPubMedCentralCrossRefGoogle Scholar
  2. Averhoff B (2009) Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus. FEMS Microbiol Rev 33:611–626PubMedCrossRefGoogle Scholar
  3. Averhoff B, Friedrich A (2003) Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch Microbiol 180(6):385–393PubMedCrossRefGoogle Scholar
  4. Barroso G, Labarere J (1988) Chromosomal gene transfer in Spiroplasma citri. Science 241:959–961PubMedCrossRefGoogle Scholar
  5. Blesa A, Berenguer J (2015) Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp. Int Microbiol 18(3):177–187PubMedGoogle Scholar
  6. Blesa A, César CE, Averhoff B, Berenguer J (2015) Noncanonical cell-to-cell DNA transfer in Thermus spp. is insensitive to argonaute-mediated interference. J Bacteriol 197:138–146PubMedCrossRefGoogle Scholar
  7. Blesa A, Baquedano I, Quintáns NG, Mata CP, Castón JR, Berenguer J (2017a) The transjugation machinery of Thermus thermophilus: identification of TdtA, an ATPase involved in DNA donation. PLoS Gen 13:e1006669CrossRefGoogle Scholar
  8. Blesa A, Quintans NG, Baquedano I, Mata CP, Castón JR, Berenguer J (2017b) Role of archaeal HerA protein in the biology of the bacterium Thermus thermophilus. Genes 8(5):130PubMedCentralCrossRefGoogle Scholar
  9. Blesa A, Averhoff B, Berenguer J (2018) Horizontal gene transfer in Thermus spp. Curr Issues Mol Biol 29:23–36PubMedCrossRefGoogle Scholar
  10. Blesa A, Sánchez M, Sacristán-Horcajada E, González-de la Fuente S, Peiró R, Berenguer J (2019) Into the Thermus mobilome: presence, diversity and recent activities of insertion sequences across Thermus spp. Microorganisms 7(1):25PubMedCentralCrossRefGoogle Scholar
  11. Brüggemann H, Chen C (2006) Comparative genomics of Thermus thermophilus: plasticity of the megaplasmid and its contribution to a thermophilic lifestyle. J Biotechnol 124:654–661PubMedCrossRefGoogle Scholar
  12. Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 155:376–386PubMedCrossRefGoogle Scholar
  13. Byrne RT, Schuller JM, Unverdorben P, Förster F, Hopfner KP (2014) Molecular architecture of the HerA–NurA DNA double-strand break resection complex. FEBS Lett 588(24):4637–4644PubMedCrossRefGoogle Scholar
  14. Cava F, Laptenko O, Borukhov S, Chahlafi Z, Blas-Galindo E, Gómez-Puertas P, Berenguer J (2007) Control of the respiratory metabolism of Thermus thermophilus by the nitrate respiration conjugative element NCE. Mol Microbiol 64:630–646PubMedCrossRefGoogle Scholar
  15. Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13:213–231PubMedCrossRefGoogle Scholar
  16. Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2(3):241PubMedCrossRefGoogle Scholar
  17. Chiaradia L, Lefebvre C, Parra J, Marcoux J, Burlet-Schiltz O, Etienne G, Tropis M, Daffé M (2017) Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep 7:12807PubMedPubMedCentralCrossRefGoogle Scholar
  18. Citti C, Dordet-Frisoni E, Nouvel L, Kuo C, Baranowski E (2018) Horizontal gene transfers in Mycoplasmas (Mollicutes). Curr Issues Mol Biol 29:3–22PubMedCrossRefGoogle Scholar
  19. Coros A, Callahan B, Battaglioli E, Derbyshire KM (2008) The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis. Mol Microbiol 69(4):794–808PubMedPubMedCentralGoogle Scholar
  20. Da Costa MS, Rainey FA, Nobre MF (2006) The genus Thermus and relatives. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 797–812CrossRefGoogle Scholar
  21. Derbyshire KM, Gray TA (2014) Distributive conjugal transfer: new insights into horizontal gene transfer and genetic exchange in mycobacteria. Microbiol Spec 2:04CrossRefGoogle Scholar
  22. Dordet-Frisoni E, Marenda MS, Sagné E, Nouvel LX, Guérillot R, Glaser P, Blanchard A, Tardy F, Sirand-Pugnet P, Baranowski E (2013) ICEA of Mycoplasma agalactiae: a new family of self-transmissible integrative elements that confers conjugative properties to the recipient strain. Mol Microbiol 89:1226–1239PubMedCrossRefGoogle Scholar
  23. Dordet-Frisoni E, Sagné E, Baranowski E, Breton M, Nouvel LX, Blanchard A, Marenda MS, Tardy F, Sirand-Pugnet P, Citti C (2014) Chromosomal transfers in Mycoplasmas: when minimal genomes go mobile. MBio 5:e01958PubMedPubMedCentralCrossRefGoogle Scholar
  24. Flint JL, Kowalski JC, Karnati PK, Derbyshire KM (2004) The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. PNAS 101:12598–12603PubMedCrossRefGoogle Scholar
  25. Gounder K, Brzuszkiewicz E, Liesegang H, Wollherr A, Daniel R, Gottschalk G, Reva O, Kumwenda B, Srivastava M, Bricio C, Berenguer J, van Heerden E, Litthauer D (2011) Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01. BMC Genet 12(1):577CrossRefGoogle Scholar
  26. Gray TA, Derbyshire KM (2018) Blending genomes: distributive conjugal transfer in mycobacteria, a sexier form of HGT. Mol Microbiol 108:601–613PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gray TA, Krywy JA, Harold J, Palumbo MJ, Derbyshire KM (2013) Distributive conjugal transfer in mycobacteria generates progeny with meiotic-like genome-wide mosaicism, allowing mapping of a mating identity locus. PLoS Biol 11:e1001602PubMedPubMedCentralCrossRefGoogle Scholar
  28. Grohmann E, Keller W, Muth G (2017) Mechanisms of conjugative transfer and type IV secretion-mediated effector transport in gram-positive bacteria. In: Type IV secretion in gram-negative and gram-positive bacteria. Springer, Cham, pp 115–141Google Scholar
  29. Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R (2016) ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol 14(11):677PubMedCrossRefGoogle Scholar
  30. Kieser T, Hopwood DA, Wright HM, Thompson CJ (1982) pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185(2):223–238PubMedCrossRefGoogle Scholar
  31. Kirby C, Waring A, Griffin TJ, Falkinham JO, Grindley NDF, Derbyshire KM (2002) Cryptic plasmids of Mycobacterium avium: Tn552 to the rescue. Mol Microbiol 43:173–186PubMedCrossRefGoogle Scholar
  32. Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166(1):338–340PubMedPubMedCentralCrossRefGoogle Scholar
  33. Parsons LM, Jankowski CS, Derbyshire KM (1998) Conjugal transfer of chromosomal DNA in Mycobacterium smegmatis. Mol Microbiol 28:571–582PubMedCrossRefGoogle Scholar
  34. Pereyre S, Sirand-Pugnet P, Beven L, Charron A, Renaudin H, Barre A, Avenaud P, Jacob D, Couloux A, Barbe V, De Daruvar A, Blanchard A, Bébéar C (2009) Life on arginine for Mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas. PLoS Gen 5(10):e1000677CrossRefGoogle Scholar
  35. Pettis GS (2018) Spreading the news about the novel conjugation mechanism in Streptomyces bacteria. Environ Microbiol Rep 10:503–510PubMedCrossRefGoogle Scholar
  36. Possoz C, Ribard C, Gagnat J, Pernodet JL, Guérineau M (2001) The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer. Mol Microbiol 42(1):159–166PubMedCrossRefGoogle Scholar
  37. Ramirez-Arcos S, Fernandez-Herrero LA, Berenguer J (1998) A thermophilic nitrate reductase is responsible for the strain specific anaerobic growth of Thermus thermophilus HB8. Biochim Biophys Acta 1396:215–227PubMedCrossRefGoogle Scholar
  38. Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62(4):1094–1156PubMedPubMedCentralGoogle Scholar
  39. Reuther J, Gekeler C, Tiffert Y, Wohlleben W, Muth G (2006) Unique conjugation mechanism in mycelial streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol Microbiol 61:436–446PubMedCrossRefGoogle Scholar
  40. Rocha EP, Cornet E, Michel B (2005) Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Gen 1(2):e15CrossRefGoogle Scholar
  41. Sepúlveda E, Vogelmann J, Muth G (2011) A septal chromosome segregator protein evolved into a conjugative DNA-translocator protein. Mob Genet Elem 1:225–229CrossRefGoogle Scholar
  42. Sharp MD, Pogliano K (1999) An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. PNAS 96(25):14553–14558PubMedCrossRefGoogle Scholar
  43. Sirand-Pugnet P, Lartigue C, Marenda M, Jacob D, Barré A, Barbe V, Schenowitz C, Mangenot S, Couloux A, Segurens B (2007) Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Gen 3(5):e75CrossRefGoogle Scholar
  44. Stinear TP, Mve-Obiang A, Small PLC, Frigui W, Pryor MJ, Brosch R, Jenkin GA, Johnson PDR, Davies JK, Lee RE, Adusumilli S, Garnier T, Haydock SF, Leadlay PF, Cole ST (2004) Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. PNAS 101:1345–1349PubMedCrossRefGoogle Scholar
  45. Tardy F, Mick V, Dordet-Frisoni E, Marenda MS, Sirand-Pugnet P, Blanchard A, Citti C (2015) Integrative conjugative elements are widespread in field isolates of Mycoplasma species pathogenic for ruminants. Appl Environ Microbiol 81:1634–1643PubMedPubMedCentralCrossRefGoogle Scholar
  46. Te Poele EM, Bolhuis H, Dijkhuizen L (2008) Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek 94(1):127–143CrossRefGoogle Scholar
  47. Teachman AM, French CT, Yu H, Simmons WL, Dybvig K (2002) Gene transfer in Mycoplasma pulmonis. J Bacteriol 184(4):947–951PubMedPubMedCentralCrossRefGoogle Scholar
  48. Thoma L, Muth G (2012) Conjugative DNA transfer in Streptomyces by TraB: is one protein enough? FEMS Microbiol Lett 337:81–88PubMedCrossRefGoogle Scholar
  49. Thoma L, Muth G (2015) The conjugative DNA-transfer apparatus of Streptomyces. Int J Med Microbiol 305:224–229PubMedPubMedCentralCrossRefGoogle Scholar
  50. Thoma L, Vollmer B, Muth G (2016) Fluorescence microscopy of Streptomyces conjugation suggests DNA-transfer at the lateral walls and reveals the spreading of the plasmid in the recipient mycelium. Environ Microbiol 18(2):598–608PubMedCrossRefGoogle Scholar
  51. Ummels R, Abdallah AM, Kuiper V, Aâjoud A, Sparrius M, Naeem R, Spaink HP, Van Soolingen D, Pain A, Bitter W (2014) Identification of a novel conjugative plasmid in Mycobacteria that requires both type IV and type VII secretion. MBio 5:e01744-14PubMedPubMedCentralCrossRefGoogle Scholar
  52. Vogelmann J, Ammelburg M, Finger C, Guezguez J, Linke D, Flötenmeyer M, Stierhof YD, Wohlleben W, Muth G (2011) Conjugal plasmid transfer in Streptomyces resembles bacterial chromosome segregation by FtsK/SpoIIIE. EMBO J 30:2246–2254PubMedPubMedCentralCrossRefGoogle Scholar
  53. Wall D, Kaiser D (1999) Type IV pili and cell motility. Mol Microbiol 32(1):01–10CrossRefGoogle Scholar
  54. Wang J, Karnati PK, Takacs CM, Kowalski JC, Derbyshire KM (2005) Chromosomal DNA transfer in Mycobacterium smegmatis is mechanistically different from classical Hfr chromosomal DNA transfer. Mol Microbiol 58:280–288PubMedCrossRefGoogle Scholar
  55. Wozniak RA, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552–563PubMedCrossRefGoogle Scholar
  56. Xiao L, Paralanov V, Glass JI, Duffy LB, Robertson JA, Cassell GH, Chen Y, Waites KB (2011) Extensive horizontal gene transfer in ureaplasmas from humans questions the utility of serotyping for diagnostic purposes. J Clin Microbiol 49:2818–2826PubMedPubMedCentralCrossRefGoogle Scholar
  57. Zhu Z, Guan S, Robinson D, El Fezzazi H, Quimby A, Xu S-Y (2014) Characterization of cleavage intermediate and star sites of RM. Tth111II. Sci Rep 4:3838PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Experimental Sciences, Department of BiotechnologyUniversidad Francisco de VitoriaMadridSpain
  2. 2.Centro de Biología Molecular Severo Ochoa (CBMSO)Universidad Autónoma de Madrid-Consejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations