Advertisement

Role of Horizontal Gene Transfer in Cancer Progression

  • A. G. Abril
  • V. NotarioEmail author
Chapter

Abstract

Different forms of programmed cell death are known to happen at different stages in the course of normal development as well as during the life of healthy adult organisms to maintain physiologic homeostasis. Cell death causes the release into the surrounding environment of nucleic acids, proteins, and other macromolecules that can be discharged as free entities or incorporated into vesicles derived from intracellular membranes, including nuclear fragments, or from the cell membrane. Nucleic acids (DNA, RNA, non-coding RNAs) can be taken up by neighboring or distant cells and may promote in them significant changes in fundamental biological processes such as stress-response, gene expression, proliferation, differentiation, secretory patterns, substrate attachment, and many other functions. In the context of cancer progression, once tumors reach a certain size, prior to the establishment of a tumor-associated vasculature system, cancer cells in the inner portion of the tumor mass are subjected to stress conditions (e.g., hypoxia, acidic pH, limited nutrient availability), which in many cases result in cell death, with the consequent release of cellular malignancy-promoting materials (e.g., oncogenes, oncogenic miRNAs, and others) that, when taken up by normal cells, can promote their malignant transformation. In addition to such form of cell death-associated horizontal gene transfer, cancer cells have been shown to be particularly proficient at releasing cell membrane-derived vesicles, most frequently of the exosome type, carrying a variety of cancer-promoting cellular constituents. Exosomes are used by the tumor cells to shuttle reciprocal signals to stromal cells proximal to the tumors to favor the creation of a more favorable environment for cancer growth or to transport oncogenic molecules to remote destinations where they contribute to create a pro-metastatic niche in healthy tissues. In addition, exosome-mediated horizontal gene transfer has been shown to contribute to provide and spread resistance in response to diverse anticancer therapies. This review will summarize our current knowledge on the contribution of horizontal gene transfer from circulating cell-free nucleic acids (CNAs) or from exosome-encapsulated materials to the various stages of human tumor progression.

Keywords

Carcinogenesis Cell death Circulating nucleic acids Exosomes Extracellular vesicles Malignant transformation 

References

  1. Abels ER, Breakefield XO (2016) Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 36:301–312PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adams BD et al (2017) Targeting noncoding RNAs in disease. J Clin Invest 127:761–771PubMedPubMedCentralCrossRefGoogle Scholar
  3. Al-Nedawi K et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624PubMedCrossRefGoogle Scholar
  4. Atkin-Smith GK et al (2015) A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun 6:7439PubMedPubMedCentralCrossRefGoogle Scholar
  5. Balaj L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180PubMedPubMedCentralCrossRefGoogle Scholar
  6. Batagov AO, Kurochkin IV (2013) Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol Direct 8:12PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116PubMedCrossRefGoogle Scholar
  8. Bergsmedh A et al (2001) Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 98:6407–6411PubMedCrossRefGoogle Scholar
  9. Berridge MV et al (2018) Mitochondrial genome transfer to tumor cells breaks the rules and establishes a new precedent in cancer biology. Mol Cell Oncol 5:e1023929PubMedPubMedCentralCrossRefGoogle Scholar
  10. Besse B et al (2016) Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5:e1071008PubMedCrossRefGoogle Scholar
  11. Bettegowda C et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224CrossRefGoogle Scholar
  12. Bissig C, Gruenberg J (2014) ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 24:19–25PubMedCrossRefGoogle Scholar
  13. Blood PK (2016) Blood-based analysis of circulating cell-free DNA and tumor cells for early cancer detection. PLoS Med 13:e1002205CrossRefGoogle Scholar
  14. Bolukbasi MF et al (2012) miR 1289 and “zipcode”-like sequence enrich mRNAs in microvesicles. Mol Ther Nucleic Acids 1:e10PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boyiadzis M, Whiteside TL (2017) The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia 31:1259–1268PubMedCrossRefGoogle Scholar
  16. Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424CrossRefGoogle Scholar
  17. Bronkhorst AJ et al (2016) Characterization of cell-free DNA released by cultured cancer cells. Biochim Biophys Acta 1863:157–165PubMedCrossRefGoogle Scholar
  18. Budnik LT et al (2013) Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides. PLoS One 8:e64413PubMedPubMedCentralCrossRefGoogle Scholar
  19. Califano A, Alvarez MJ (2017) The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat Rev Cancer 17:116–130PubMedCrossRefGoogle Scholar
  20. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866PubMedCrossRefGoogle Scholar
  21. Cancer Facts and Figures 2018 American Cancer Society. AtlantaGoogle Scholar
  22. Catalanotto C et al (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17:E1712PubMedCrossRefGoogle Scholar
  23. Chaffer CL, Weinberg RA (2015) How does multistep tumorigenesis really proceed? Cancer Discov 5:22–24PubMedPubMedCentralCrossRefGoogle Scholar
  24. Challagundla P et al (2015) Exosome mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst 107:djv135PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen W et al (2014a) Exosomes from docetaxel resistant breast cancer cells alter chemosensitivity by delivering microRNAs. Tumour Biol 35:9649–9659PubMedCrossRefGoogle Scholar
  26. Chen W et al (2014b) Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 9:e95240PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen W et al (2016) Nanoscale characterization of carrier dynamic and surface passivation in InGaN/GaN multiple quantum wells on GaN nanorods. ACS Appl Mater Interfaces 8:31887–31893PubMedCrossRefGoogle Scholar
  28. Chennakrishnaiah S et al (2018) Leukocytes as reservoirs of circulating oncogenic DNA and regulatory targets of tumor-derived extracellular vesicles. J Thromb Haemost 16:1800–1813PubMedCrossRefGoogle Scholar
  29. Chin AR, Wang SE (2016) Cancer tills the premetastatic field: mechanistic basis and clinical implications. Clin Cancer Res 22:3725–3733PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chiu RW et al (2003) Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem 49:719–726PubMedCrossRefGoogle Scholar
  31. Choi D et al (2017) Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol 67:11–22PubMedCrossRefGoogle Scholar
  32. Colombo M et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126:5553–5565PubMedCrossRefGoogle Scholar
  33. Colombo M et al (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289PubMedCrossRefGoogle Scholar
  34. Costa Verdera H et al (2017) Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release 266:100–108PubMedCrossRefGoogle Scholar
  35. Diaz LA et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540PubMedPubMedCentralCrossRefGoogle Scholar
  36. Diehl F et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102:16368–16373PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dielmann-Gessner J et al (2014) Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state. Proc Natl Acad Sci USA 111:17857–17862PubMedCrossRefGoogle Scholar
  38. Ding W-X, Yin X-M (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393:547–564PubMedPubMedCentralGoogle Scholar
  39. El Andaloussi S et al (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65:391–397PubMedCrossRefGoogle Scholar
  40. Esquilin Y et al (2012) mtDNA migration and the role of exosomes in horizontal gene transfer. Microsc Microanal 18(2):286–287CrossRefGoogle Scholar
  41. Ewing J (1928) Neoplastic diseases, 3rd edn. WB Saunders, PhiladelphiaGoogle Scholar
  42. Fais S et al (2016) Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano 10:3886–3899PubMedCrossRefGoogle Scholar
  43. Falcone G et al (2015) Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res 34:32PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fan GC (2014) Hypoxic exosomes promote angiogenesis. Blood 124:3669–3670PubMedCrossRefGoogle Scholar
  45. Fischer S et al (2016) Indication of horizontal DNA gene transfer by extracellular vesicles. PLoS One 11(9):e0163665PubMedPubMedCentralCrossRefGoogle Scholar
  46. French KC et al (2017) Extracellular vesicle docking at the cellular port: extracellular vesicle binding and uptake. Semin Cell Dev Biol 67:48–55PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gahan P (2013) Circulating nucleic acids: possible inherited effects. Biol J Linn Soc 110:931–928CrossRefGoogle Scholar
  48. Garcia-Arranz M et al (2017) A preliminary study of the action of virtosomes from non-dividing cells on tumour cell replication in vitro and in vivo. Anti Cancer Agents Med Chem 17:1401–1410CrossRefGoogle Scholar
  49. García-Olmo DC (2010) Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res 70:560–567PubMedCrossRefGoogle Scholar
  50. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37PubMedPubMedCentralCrossRefGoogle Scholar
  51. Giallombardo M et al (2016) Exosome-mediated drug resistance in cancer: the near future is here. Ther Adv Med Oncol 8:320–322PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gilligan KE, Dwyer RM (2017) Engineering exosomes for cancer therapy. Int J Mol Sci 18:1122PubMedCentralCrossRefPubMedGoogle Scholar
  53. Glebova K et al (2015) Oxidized extracellular DNA as a stress signal that may modify responses to anticancer therapy. Cancer Lett 356:22–33PubMedCrossRefGoogle Scholar
  54. Goetz JG (2018) Metastases go with the flow. Science 362:999–1000PubMedCrossRefGoogle Scholar
  55. Gonzalez-Masia JA et al (2013) Circulating nucleic acids in plasma and serum (CNAPS): applications in oncology. Onco Targets Ther 6:819–832PubMedPubMedCentralGoogle Scholar
  56. Grange C et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71:5346–5356PubMedCrossRefGoogle Scholar
  57. Gravina S et al (2016) The dark side of circulating nucleic acids. Aging Cell 15:398–399PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gupta D (2017) Circulating nucleic acids (CNAs) in a new perspective. J Cell Dev Biol 1:6CrossRefGoogle Scholar
  59. Haney MJ et al (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30PubMedPubMedCentralCrossRefGoogle Scholar
  60. Harding C et al (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339PubMedCrossRefGoogle Scholar
  61. Heath N et al (2018) Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Sci Rep 8:5730PubMedPubMedCentralCrossRefGoogle Scholar
  62. Heitzer E et al (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61:112–123PubMedCrossRefGoogle Scholar
  63. Hiratsuka S et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300PubMedCrossRefGoogle Scholar
  64. Hiratsuka S et al (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355PubMedCrossRefGoogle Scholar
  65. Holdenrieder S et al (2008) Clinical relevance of circulating nucleosomes in cancer. Ann N Y Acad Sci 1137:180–189PubMedCrossRefGoogle Scholar
  66. Horibe S et al (2018) Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer 18:47PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hosseini-Beheshti E et al (2012) Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Mol Cell Proteomics 11:863–885PubMedPubMedCentralCrossRefGoogle Scholar
  68. Huang C-Y et al (2014) Circulating free mitochondrial DNA concentration and its association with erlotinib treatment in patients with adenocarcinoma of the lung. Oncol Lett 7:2180–2184PubMedPubMedCentralCrossRefGoogle Scholar
  69. Huber V et al (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–1804PubMedCrossRefGoogle Scholar
  70. Jiang P, Lo YMD (2016) The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends Genet 32:6CrossRefGoogle Scholar
  71. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252PubMedCrossRefGoogle Scholar
  72. Kahlert C et al (2014) Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289:3869–3875PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kalra H et al (2016) Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci 17:170PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kanada M et al (2015) Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA 112:E1433–E1442PubMedGoogle Scholar
  75. Kaplan RN et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedPubMedCentralCrossRefGoogle Scholar
  76. Khier S, Lohan L (2018) Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature. Future Sci OA 4:FSO295PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kohler C et al (2009) Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer 8:105PubMedPubMedCentralCrossRefGoogle Scholar
  78. Konoshenko MY et al (2018) Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int 2018:8545347PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kosaka N et al (2013) Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288:10849–10859PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kostyuk SV et al (2012) Role of extracellular oxidative modification in radiation induced bystander effects in human endotheliocytes. Mutat Res Fundam Mol Mech Mutagen 729:52–60CrossRefGoogle Scholar
  81. Kuo YB et al (2014) Comparison of KRAS mutation analysis of primary tumors and matched circulating cell-free DNA in plasmas of patients with colorectal cancer. Clin Chim Acta 433:284–289PubMedCrossRefGoogle Scholar
  82. Lai X et al (2017) A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett 393:86–93PubMedPubMedCentralCrossRefGoogle Scholar
  83. Laktionov P et al (2004) Cell-surface-bound nucleic acids: free and cell-surface-bound nucleic acids in blood of healthy donors and breast cancer patients. Ann N Y Acad Sci 1022:221–227PubMedCrossRefGoogle Scholar
  84. Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited: the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128:2527–2535PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lasser C et al (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lawrie CH et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lázaro-Ibáñez E et al (2014) Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate 74:1379–1390PubMedPubMedCentralCrossRefGoogle Scholar
  88. Le QT et al (2004) Hypoxic gene expression and metastasis. Cancer Metastasis Rev 23:293–310PubMedCrossRefGoogle Scholar
  89. Le MT et al (2014) miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124:5109–5128PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lecomte T et al (2002) Detection of free-circulating tumor associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 100:542–548PubMedCrossRefGoogle Scholar
  91. Lee TH et al (2016) Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras. Oncotarget 7:51991–52002PubMedPubMedCentralGoogle Scholar
  92. Lo Cicero A et al (2015) Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun 6:7506PubMedCrossRefGoogle Scholar
  93. Luga V et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–1556PubMedCrossRefGoogle Scholar
  94. Ma X et al (2014) Essential role for TrpC5-containing extracellular vesicles in breast cancer with chemotherapeutic resistance. Proc Natl Acad Sci USA 111:6389–6394PubMedCrossRefGoogle Scholar
  95. Madhavan D et al (2014) Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. Breast Cancer Res Treat 146:163–174PubMedCrossRefGoogle Scholar
  96. Mandel P, Metais P (1948) Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil 142:241–243PubMedGoogle Scholar
  97. Mao L et al (2018) Serum exosomes contain ECRG4 mRNA that suppresses tumor growth via inhibition of genes involved in inflammation, cell proliferation, and angiogenesis. Cancer Gene Ther 25:248–259PubMedCrossRefGoogle Scholar
  98. Mathieu M et al (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17PubMedCrossRefGoogle Scholar
  99. Mathivanan S et al (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40:D1241–D1244PubMedCrossRefGoogle Scholar
  100. Melo SA et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721PubMedPubMedCentralCrossRefGoogle Scholar
  101. Melo SA et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182PubMedPubMedCentralCrossRefGoogle Scholar
  102. Menck K et al (2017) Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J Extracell Vesicles 6:1378056PubMedPubMedCentralCrossRefGoogle Scholar
  103. Milane L et al (2015) Exosome mediated communication within the tumor microenvironment. J Control Release 219:278–294PubMedCrossRefGoogle Scholar
  104. Minciacchi VR et al (2015) Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 40:41–51PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mittra I et al (2015) Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. J Biosci 40:91–111PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mizrak A et al (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 21:101–108CrossRefGoogle Scholar
  107. Momen-Heravi F (2017) Isolation of extracellular vesicles by ultracentrifugation. Methods Mol Biol 1660:25–32PubMedCrossRefGoogle Scholar
  108. Mouliere F et al (2011) High fragmentation characterizes tumour-derived circulating DNA. PLoS One 6:e23418PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mouliere F et al (2014) Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol 8:927–941PubMedPubMedCentralCrossRefGoogle Scholar
  110. Mulcahy LA et al (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:24641CrossRefGoogle Scholar
  111. Newman AM et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20:548–554PubMedPubMedCentralCrossRefGoogle Scholar
  112. Nilsson J et al (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100:1603–1607PubMedPubMedCentralCrossRefGoogle Scholar
  113. Nilsson RJ et al (2016) Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget 7:1066–1075PubMedCrossRefGoogle Scholar
  114. O’Leary B, Turner NC (2016) Science in focus: circulating tumor DNA as a liquid biopsy. Clin Oncol 28:735–738CrossRefGoogle Scholar
  115. Ohno S et al (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21:185–191PubMedCrossRefGoogle Scholar
  116. Ohshima K et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5:e13247PubMedPubMedCentralCrossRefGoogle Scholar
  117. Ordonez-Moran P, Huelsken J (2014) Complex metastatic niches: already a target for therapy? Curr Opin Cell Biol 31:29–38PubMedCrossRefGoogle Scholar
  118. Ostenfeld MS et al (2014) Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res 74:5758–5771PubMedCrossRefGoogle Scholar
  119. Paget S (1989) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8:98–101PubMedPubMedCentralGoogle Scholar
  120. Pan BT et al (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948PubMedCrossRefGoogle Scholar
  121. Pan S et al (2014) Microvesicle-shuttled miR-130b reduces fat deposition n recipient primary cultured porcine adipocytes by inhibiting PPAR-g expression. J Cell Physiol 229:631–639PubMedCrossRefGoogle Scholar
  122. Peinado H et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891PubMedPubMedCentralCrossRefGoogle Scholar
  123. Peinado H et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317PubMedCrossRefGoogle Scholar
  124. Peters DL, Pretorius PJ (2012) Continuous adaptation through genetic communication: a putative role for cell-free DNA. Expert Opin Biol Ther 12:S127–S132PubMedCrossRefGoogle Scholar
  125. Pink RC et al (2015) The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol 137:143–151PubMedCrossRefGoogle Scholar
  126. Pitt JM et al (2014) Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 193:1006–1011PubMedCrossRefGoogle Scholar
  127. Prada I et al (2016) A new approach to follow a single extracellular vesicle-cell interaction using optical tweezers. BioTechniques 60:35–41PubMedCrossRefGoogle Scholar
  128. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293PubMedPubMedCentralCrossRefGoogle Scholar
  129. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383PubMedPubMedCentralCrossRefGoogle Scholar
  130. Ratajczak J et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856PubMedCrossRefGoogle Scholar
  131. Ridder K (2015) Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 4:e1008371PubMedPubMedCentralCrossRefGoogle Scholar
  132. Ronquist KG et al (2009) Human prostasomes contain chromosomal DNA. Prostate 69:737–743PubMedCrossRefGoogle Scholar
  133. Salzberg SL (2017) Horizontal gene transfer is not a hallmark of the human genome. Genome Biol 18:85PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sansone P et al (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 114:E9066–E9075PubMedPubMedCentralCrossRefGoogle Scholar
  135. Schorey JS et al (2015) Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 16:24–43PubMedCrossRefGoogle Scholar
  136. Schulz WA et al (2006) Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol 310:211–250PubMedGoogle Scholar
  137. Schwarzenbach H et al (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437PubMedCrossRefGoogle Scholar
  138. Shibue T, Weinberg RA (2011) Metastatic colonization: settlement, adaptation and propagation of tumor cells in a foreign tissue environment. Semin Cancer Biol 21:99–106PubMedCrossRefGoogle Scholar
  139. Shojaei F et al (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA 106:6742–6747PubMedCrossRefGoogle Scholar
  140. Siegel RL et al (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30PubMedCrossRefGoogle Scholar
  141. Silva M, Melo SA (2015) Non-coding RNAs in exosomes: new players in cancer biology. Curr Genomics 16:295–303PubMedPubMedCentralCrossRefGoogle Scholar
  142. Simpson RJ et al (2012) ExoCarta as a resource for exosomal research. J Extracell Vesicles 1:18374CrossRefGoogle Scholar
  143. Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sleeman JP (2012) The metastatic niche and stromal progression. Cancer Metastasis Rev 31:429–440PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sleeman JP (2015) The lymph node pre-metastatic niche. J Mol Med 93:1173–1184PubMedCrossRefGoogle Scholar
  146. Soucy SM et al (2015) Horizontal gene transfer: building the web of life. Nat Rev Genet 16:472–482PubMedPubMedCentralCrossRefGoogle Scholar
  147. Squadrito ML et al (2014) Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8:1432–1446PubMedCrossRefGoogle Scholar
  148. Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16:201–218PubMedCrossRefGoogle Scholar
  149. Steenbeek SC et al (2018) Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles. EMBO J 37:e98357PubMedPubMedCentralCrossRefGoogle Scholar
  150. Stollar BD, Stephenson F (2002) Apoptosis and nucleosomes. Lupus 11:787–789PubMedCrossRefGoogle Scholar
  151. Svensson KJ et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288:17713–17724PubMedPubMedCentralCrossRefGoogle Scholar
  152. Szczesny B et al (2018) Mitochondrial DNA damage and subsequent activation of Z-DNA binding protein 1 links oxidative stress to inflammation in epithelial cells. Sci Rep 8:914PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tangkijvanich P et al (2007) Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma. Clin Chim Acta 379:127–133PubMedCrossRefGoogle Scholar
  154. Thakur BK et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769PubMedPubMedCentralCrossRefGoogle Scholar
  155. Thèry C et al (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579PubMedCrossRefGoogle Scholar
  156. Thèry C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750PubMedPubMedCentralCrossRefGoogle Scholar
  157. Thierry AR et al (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20:430–435PubMedCrossRefGoogle Scholar
  158. Thierry AR et al (2016) Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 35:347–376PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tian T et al (2010) Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 111:488–496PubMedCrossRefGoogle Scholar
  160. Tian Y et al (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390PubMedCrossRefGoogle Scholar
  161. Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20:5–20PubMedCrossRefGoogle Scholar
  162. Trejo-Becerril C et al (2012) Cancer progression mediated by horizontal gene transfer in an in vivo model. PLoS One 7:e52754PubMedPubMedCentralCrossRefGoogle Scholar
  163. Umetani N et al (2006a) Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem 52:1062–1069PubMedCrossRefGoogle Scholar
  164. Umetani N et al (2006b) Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 24:4270–4276PubMedCrossRefGoogle Scholar
  165. Umezu T et al (2014) Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124:3748–3757PubMedPubMedCentralCrossRefGoogle Scholar
  166. Uzawa K et al (2012) Circulating tumor-derived mutant mitochondrial DNA: a predictive biomarker of clinical prognosis in human squamous cell carcinoma. Oncotarget 3:670–677PubMedPubMedCentralCrossRefGoogle Scholar
  167. Vader P et al (2014) Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med 20:385–393PubMedPubMedCentralCrossRefGoogle Scholar
  168. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedCrossRefGoogle Scholar
  169. Van Niel G et al (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228PubMedPubMedCentralCrossRefGoogle Scholar
  170. Villarroya-Beltri C et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980PubMedPubMedCentralCrossRefGoogle Scholar
  171. Vogelstein B et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532PubMedCrossRefGoogle Scholar
  172. Volik S et al (2016) Cell-free DNA (cfDNA): clinical significance and utility in cancer shaped by emerging technologies. Mol Cancer Res 14:898–908PubMedCrossRefGoogle Scholar
  173. Waldenström A et al (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7:e34653PubMedPubMedCentralCrossRefGoogle Scholar
  174. Ward TH et al (2008) Biomarkers of apoptosis. Br J Cancer 99:841–846PubMedPubMedCentralCrossRefGoogle Scholar
  175. Weiss L (1986) Metastatic inefficiency: causes and consequences. Cancer Res 3:1–24Google Scholar
  176. Weiss RA (2004) Multistage carcinogenesis. Br J Cancer 91:1981–1982PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wendler F et al (2017) Extracellular vesicles swarm the cancer microenvironment: from tumor-stroma communication to drug intervention. Oncogene 36:877–884PubMedCrossRefGoogle Scholar
  178. Weston A, Harris CC (2003) Multistage carcinogenesis. In: Kufe D, Pollock RE, Weichselbaum RR et al (eds) Holland-Frei cancer medicine, 6th edn. BC Decker, Hamilton, ONGoogle Scholar
  179. Whiteside TL (2016) Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 74:103–141PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wiklander OPB et al (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4:26316PubMedCrossRefGoogle Scholar
  181. Xu R et al (2018) Extracellular vesicles in cancer: implications for future improvements in cancer care. Nat Rev Clin Oncol 15:617–638PubMedCrossRefGoogle Scholar
  182. Yang S et al (2017) Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther 18:158–165PubMedPubMedCentralCrossRefGoogle Scholar
  183. Yang Q et al (2018) Regulation of cancer immune escape: the roles of miRNAs in immune checkpoint proteins. Cancer Lett 431:73–84PubMedCrossRefGoogle Scholar
  184. Yokoi A et al (2017) Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun 8:14470PubMedPubMedCentralCrossRefGoogle Scholar
  185. Yuspa SH (2000) Overview of carcinogenesis: past, present and future. Carcinogenesis 21:341–344PubMedCrossRefGoogle Scholar
  186. Zajac O et al (2018) Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas. Nat Cell Biol 20:296–306PubMedCrossRefGoogle Scholar
  187. Zhou W et al (2014) Cancer secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25:501–515PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zhuang G et al (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 31:3513–3523PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Pharmacy, Department of MicrobiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Radiation Medicine, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashington, DCUSA

Personalised recommendations