The Rhizobiaceae Bacteria Transferring Genes to Higher Plants

  • Martha-Helena Ramírez-Bahena
  • Alvaro Peix
  • Encarna VelázquezEmail author


The family Rhizobiaceae includes several bacterial genera able to induce root or stem nodules, which can be beneficial for the plant, or hypertrophies, such as tumours, which cause plant damage. The members from genus Agrobacterium are well known by their ability to transfer genes to different plants originating tumours, and this feature has been biotechnologically exploited to produce transgenic plants. Nevertheless, the taxonomy and phylogeny of this genus has been confusing in the last decades after its reclassification into the genus Rhizobium. The presence of the telomerase-coding gene telA is a unique characteristic of the Agrobacterium clade, and it has been recently recovered as a separate genus. However, some tumour-inducing strains remain classified within genus Rhizobium, and some other species have been reclassified into genus Allorhizobium. The phylogenies of the virulence genes harboured by pTi plasmids inside or outside T-DNA are different as well as the symptoms induced in plants. In this chapter we revise the evolution of the taxonomy of tumorigenic species from family Rhizobiaceae over time, their interactions with different plants, the implications of horizontal gene transfer (HGT) in plant evolution and their use to obtain transgenic plants.


Rhizobiaceae Agrobacterium Rhizobium Allorhizobium HGT Plants Tumours Hairy roots Transgenic plants Plant evolution 



The authors would like to thank our numerous collaborators and students involved in this research over the years. Funding was provided by “Ministerio de Economía, Ciencia, Industria y Competitividad (MINECO)” and “Junta de Castilla y León”.


  1. Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof ZN, Atabaki N, Talei D (2016) A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol 18:21–42PubMedPubMedCentralGoogle Scholar
  2. Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998PubMedCrossRefPubMedCentralGoogle Scholar
  3. Allardet-Servent A, Michaux-Charachon S, Jumas-Bilak E, Karayan L, Ramuz M (1993) Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J Bacteriol 175:7869–7874PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anand A, Bass SH, Wu E, Wang N, McBride KE, Annaluru N, Miller M, Hua M, Jones TJ (2018) An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol 97:187–200PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S, Simon MF, Young JPW (2018) Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes (Basel) 9:E321CrossRefGoogle Scholar
  6. Banerjee S (2018) Voyaging through chromosomal studies in hairy root cultures towards unravelling their relevance to medicinal plant research: an updated review. Nucleus 61:3–18CrossRefGoogle Scholar
  7. Barker RF, Idler KB, Thompson DV, Kemp JD (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2:335–350PubMedCrossRefPubMedCentralGoogle Scholar
  8. Beijerinck MW (1888) Cultur des Bacillus radicicola aus den Knöllchen. Bot Ztg 46:740–750Google Scholar
  9. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bevan MW, Chilton MD (1982) T-DNA of the Agrobacterium Ti and Ri plasmids. Annu Rev Genet 16:357–384PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bevan M, Barnes WM, Chilton MD (1983) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res 11:369–385PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bouzar H, Jones JB (2001) Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int J Syst Evol Microbiol 51:1023–1026PubMedCrossRefPubMedCentralGoogle Scholar
  13. Brewin NJ, Beringer JE, Johnston AWB (1980) Plasmid-mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum. Microbiology 120:413–420CrossRefGoogle Scholar
  14. Cardarelli M, Mariotti D, Pomponi M, Spanò L, Capone I, Costantino P (1987) Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209:475–480PubMedCrossRefPubMedCentralGoogle Scholar
  15. Carle GF, Olson MV (1984) Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res 12:5647–5664PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149PubMedCrossRefPubMedCentralGoogle Scholar
  17. Casjens S (1999) Evolution of the linear DNA replicons of the Borrelia spirochetes. Curr Opin Microbiol 2(5):529–534PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cavara F (1897a) Eziologia di alcune malattie di piante cultivate. Le Stazioni Sperimentale Agraric Itliana 30:482–509Google Scholar
  19. Cavara F (1897b) Tuberculosi del la vite. In torno alla eziologia di alcune malattie di piante cultivate. Le Stazioni Sperimentale Agraric Itliana 30:483–487Google Scholar
  20. Chaconas G, Stewart PE, Tilly K, Bono JL, Rosa P (2001) Telomere resolution in the Lyme disease spirochete. EMBO J 20:3229–3237PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen K, Dorlhac de Borne F, Szegedi E, Otten L (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J 80:669–682PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen K, de Borne FD, Julio E, Obszynski J, Pale P, Otten L (2016) Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum. Plant J 87:258–269PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chilton MD, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77:4060–4064PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434CrossRefGoogle Scholar
  26. Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179:3085–3094PubMedPubMedCentralCrossRefGoogle Scholar
  27. Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485PubMedCrossRefPubMedCentralGoogle Scholar
  28. Clive J (2011) Global status of commercialized biotech/GM crops: 2011. ISAAA Brief No. 43. ISAAA: Ithaca, NYGoogle Scholar
  29. Conn HJ (1938) Taxonomic relationships of certain non-sporeforming rods in soil. J Bacteriol 36:320–321Google Scholar
  30. Conn HJ (1942) Validity of the genus Alcaligenes. J Bacteriol 44:353–360PubMedPubMedCentralGoogle Scholar
  31. Costechareyre D, Bertolla F, Nesme X (2009) Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol 26:167–176PubMedCrossRefPubMedCentralGoogle Scholar
  32. De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spanò L, Costantino P (1985) Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  33. Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788PubMedPubMedCentralCrossRefGoogle Scholar
  34. Depicker A, De Wilde M, De Vos G, De Vos R, Van Montagu M, Schell J (1980) Molecular cloning of overlapping segments of the nopaline Ti-plasmid pTiC58 as a means to restriction endonuclease mapping. Plasmid 3:193–211PubMedCrossRefPubMedCentralGoogle Scholar
  35. Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM (1982) Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet 1:561–573PubMedPubMedCentralGoogle Scholar
  36. Domingo JL (2016) Safety assessment of GM plants: an updated review of the scientific literature. Food Chem Toxicol 95:12–18PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dunican LK, Cannon FC (1971) The genetic control of symbiotic properties in Rhizobium: evidence for plasmid control. Plant Soil 35:73–79CrossRefGoogle Scholar
  38. Fangman WL (1978) Separation of very large DNA molecules by gel electrophoresis. Nucleic Acids Res 5(3):653–665PubMedPubMedCentralCrossRefGoogle Scholar
  39. Farrand SK, Van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ferdows MS, Barbour AG (1989) Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc Natl Acad Sci USA 86:5969–5973PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fournes F, Val ME, Skovgaard O, Mazel D (2018) Replicate once per cell cycle: replication control of secondary chromosomes. Front Microbiol 9(Aug):1833PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fraley RT, Rogers SG, Horsch RB, Eichholtz DA, Flick JS, Fink CL, Hoffmann NL, Sanders PR (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technol 3:629–635Google Scholar
  44. Frank B (1889) Ueber die pilzsymbiose der leguminosen. Bet Dtsch Bot Ges 7:332–346Google Scholar
  45. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67:16–37PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gelvin SB (2017) Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet 51:195–217PubMedCrossRefPubMedCentralGoogle Scholar
  47. Genetello C, Van Larebeke N, Holsters M, De Picker A, Van Montagu M, Schell J (1977) Ti plasmids of Agrobacterium as conjugative plasmids. Nature 265:561–563PubMedCrossRefPubMedCentralGoogle Scholar
  48. Goering RV (2010) Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10(7):866–875PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hamilton RH, Chopan MN (1975) Transfer of the tumor induction factor in Agrobacterium tumefaciens. Biochem Biophys Res Commun 63:349–354PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hamilton RH, Fall MZ (1971) The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Exp Dermatol 27:229–230Google Scholar
  51. Harrison PW, Lower RP, Kim NK, Young JP (2010) Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18:141–148CrossRefGoogle Scholar
  52. Hattori Y, Iwata K, Suzuki K, Uraji M, Ohta N, Katoh A, Yoshida K (2001) Sequence characterization of the vir region of a nopaline type Ti plasmid, pTi-SAKURA. Genes Genet Syst 76:121–130PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hildebrand EM (1940) Cane gall of brambles caused by Phytomonas n. sp. J Agric Res 61:685–696Google Scholar
  54. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213CrossRefGoogle Scholar
  55. Higashi S (1967) Transfer of clover infectivity of Rhizobium trifolii to Rhizobium phaseoli as mediated by an episomic factor. J Gen Appl Microbiol 13:391–403CrossRefGoogle Scholar
  56. Hodges LD, Vergunst AC, Neal-McKinney J, den Dulk-Ras A, Moyer DM, Hooykaas PJ, Ream W (2006) Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and type IV secretion. J Bacteriol 188:8222–8230PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hodges LD, Lee LY, McNett H, Gelvin SB, Ream W (2009) The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants. J Bacteriol 191:355–364PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hooykaas PJJ, van Brussel AAN, den Dulk-Ras H, van Slogteren GMS, Schilperoort RA (1981) Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium tumefaciens. Nature 291:351–353CrossRefGoogle Scholar
  59. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) Inheritance of functional foreign genes in plants. Science 223:496–498PubMedCrossRefPubMedCentralGoogle Scholar
  60. Huang WM, DaGloria J, Fox H, Ruan Q, Tillou J, Shi K, Aihara H, Aron J, Casjens S (2012) Linear chromosome generating system of Agrobacterium tumefaciens C58: protelomerase generates and protects hairpin ends. J Biol Chem 287:25551–25563PubMedPubMedCentralCrossRefGoogle Scholar
  61. Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20:100–110PubMedPubMedCentralCrossRefGoogle Scholar
  62. ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years. Brief 53Google Scholar
  63. James C (2003) Global review of commercialized transgenic crops. Curr Sci 84:303–309Google Scholar
  64. Joos H, Inzé D, Caplan A, Sormann M, Van Montagu M, Schell J (1983) Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32:1057–1067PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jordan DC (1984) Family III Rhizobiaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol I. Williams and Wilkins, Baltimore, pp 234–242Google Scholar
  66. Jordan DC, Allen ON (1974) Family 111. Rhizobiaceae Conn, 1938. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 261–264Google Scholar
  67. Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kado CI (2009) Horizontal gene transfer: sustaining pathogenicity and optimizing host-pathogen interactions. Mol Plant Pathol 10:143–150PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kado CI (2010) Plant bacteriology. APS Press, St. Paul, MNGoogle Scholar
  70. Kado CI (2014) Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front Microbiol 5:340PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kerr A (1969) Transfer of virulence between isolates of Agrobacterium. Nature (Lond) 223:1175–1176CrossRefGoogle Scholar
  72. Kerr A (1971) Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter. Physiol Plant Pathol 1:241–246CrossRefGoogle Scholar
  73. Kersters K, De Ley J (1984) Genus III. Agrobacterium Conn 1942. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1, 1st edn. Williams and Wilkins, Baltimore, MD, pp 244–254Google Scholar
  74. Kirby R (2011) Chromosome diversity and similarity within the Actinomycetales. FEMS Microbiol Lett 319(1):1–10PubMedCrossRefPubMedCentralGoogle Scholar
  75. Koekman BP, Ooms G, Klapwijk PM, Schilperoort RA (1979) Genetic map of an octopine TI-plasmid. Plasmid 2:347–357PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kuzmanović N, Puławska J, Prokić A, Ivanović M, Zlatković N, Jones JB, Obradović A (2015) Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum. Syst Appl Microbiol 38:373–378PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kuzmanović N, Smalla K, Gronow S, Puławska J (2018a) Rhizobium tumorigenes sp. nov., a novel plant tumorigenic bacterium isolated from cane gall tumors on thornless blackberry. Sci Rep 8:9051PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kuzmanović N, Puławska J, Smalla K, Nesme X (2018b) Agrobacterium rosae sp. nov., isolated from galls on different agricultural crops. Syst Appl Microbiol 41:191–197PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112:5844–5849PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lacroix B, Citovsky V (2016) Transfer of DNA from bacteria to eukaryotes. MBio 7:e00863-16PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lassalle F, Campillo T, Vial L, Baude J, Costechareyre D, Chapulliot D, Shams M, Abrouk D, Lavire C, Oger-Desfeux C, Hommais F, Guéguen L, Daubin V, Muller D, Nesme X (2011) Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol 3:762–781PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lerman LS, Frisch HL (1982) Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21(5):995–997PubMedCrossRefPubMedCentralGoogle Scholar
  83. Liang Y, Aoyama T, Oka A (1998) Structural characterization of the virB operon on the hairy-root-inducing plasmid A4. DNA Res 5:87–93PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lin BC, Kado CI (1977) Studies on Agrobacterium tumefaciens. VII. A virulence induced by temperature and ethidium bromide. Can J Microbiol 23:1554–1561PubMedCrossRefPubMedCentralGoogle Scholar
  85. Lin YS, Kieser HM, Hopwood DA, Chen CW (1993) The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10(5):923–933PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lumpkin OJ, Zimm BH (1982) Mobility of DNA in gel electrophoresis. Biopolymers 21(11):2315–2316PubMedCrossRefPubMedCentralGoogle Scholar
  87. Lytsy B, Engstrand L, Gustafsson Å, Kaden R (2017) Time to review the gold standard for genotyping vancomycin-resistant enterococci in epidemiology: comparing whole-genome sequencing with PFGE and MLST in three suspected outbreaks in Sweden during 2013–2015. Infect Genet Evol 54:74–80PubMedCrossRefPubMedCentralGoogle Scholar
  88. Malpighi M (1679) On Galls. In: Grew N (ed) Anatomia Plantarum. Royal Society London, LondonGoogle Scholar
  89. Matveeva TV, Bogomaz DI, Pavlova OA, Nester EW, Lutova LA (2012) Horizontal gene transfer from genus Agrobacterium to the plant linaria in nature. Mol Plant-Microbe Interact 25:1542–1551PubMedCrossRefPubMedCentralGoogle Scholar
  90. Merlo DJ, Nester EW (1977) Plasmids in a virulent strains of Agrobacterium. J Bacteriol 129:76–80PubMedPubMedCentralGoogle Scholar
  91. Mikus DM, Petes TD (1982) Recombination between genes located on nonhomologous chromosomes in Saccharomyces cerevisiae. Genetics 101:369–404PubMedPubMedCentralGoogle Scholar
  92. Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626PubMedCrossRefPubMedCentralGoogle Scholar
  93. Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307:771–784PubMedCrossRefPubMedCentralGoogle Scholar
  94. Mougel C, Thioulouse J, Perrière G, Nesme X (2002) A mathematical method for determining genome divergence and species delineation using AFLP. Int J Syst Evol Microbiol 52:573–586PubMedCrossRefPubMedCentralGoogle Scholar
  95. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov, and 13 new species combinations. Syst Appl Microbiol 38:84–90PubMedCrossRefPubMedCentralGoogle Scholar
  96. Murai N, Kemp JD, Sutton DW, Murray MG, Slightom JL, Merlo DJ, Reichert NA, Sengupta-Gopalan C, Stock CA, Barker RF, Hall TC (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222:476–482PubMedCrossRefPubMedCentralGoogle Scholar
  97. Nuti MP, Ledeboer AM, lepidi AA, schilperoort RA (1977) Large plasmids in different rhizobium species. Microbiology 100:241–248Google Scholar
  98. Ophel K, Kerr A (1990) Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Evol Microbiol 40:236–241Google Scholar
  99. Panday D, Schumann P, Das SK (2011) Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). Int J Syst Evol Microbiol 61:2632–2639PubMedCrossRefPubMedCentralGoogle Scholar
  100. Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8:3113PubMedPubMedCentralCrossRefGoogle Scholar
  101. Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214CrossRefGoogle Scholar
  102. Prado JR, Segers G, Voelker T, Carson D, Dobert R, Phillips J, Cook K, Cornejo C, Monken J, Grapes L, Reynolds T, Martino-Catt S (2014) Genetically engineered crops: from idea to product. Annu Rev Plant Biol 65:769–790PubMedCrossRefPubMedCentralGoogle Scholar
  103. Puławska J, Willems A, De Meyer SE, Süle S (2012a) Rhizobium nepotum sp. nov. isolated from tumors on different plant species. Syst Appl Microbiol 35:215–220PubMedCrossRefPubMedCentralGoogle Scholar
  104. Puławska J, Willems A, Sobiczewski P (2012b) Rhizobium skierniewicense sp. nov., isolated from tumours on chrysanthemum and cherry plum. Int J Syst Evol Microbiol 62:895–899PubMedCrossRefPubMedCentralGoogle Scholar
  105. Puławska J, Kuzmanović N, Willems A, Pothier JF (2016) Pararhizobium polonicum sp. nov. isolated from tumors on stone fruit rootstocks. Syst Appl Microbiol 39:164–169PubMedCrossRefPubMedCentralGoogle Scholar
  106. Quispe-Huamanquispe DG, Gheysen G, Kreuze JF (2017) Horizontal gene transfer contributes to plant evolution: the case of Agrobacterium T-DNAs. Front Plant Sci 8:2015PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ramírez-Bahena MH, Nesme X, Muller D (2012) Rapid and simultaneous detection of linear chromosome and large plasmids in Proteobacteria. J Basic Microbiol 52(6):36–739CrossRefGoogle Scholar
  108. Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D, Daubin V, Nesme X, Muller D (2014) Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol 73:202–307PubMedCrossRefPubMedCentralGoogle Scholar
  109. Ravin NV (2003) Mechanisms of replication and telomere resolution of the linear plasmid prophage N15. FEMS Microbiol Ecol 221:1–6CrossRefGoogle Scholar
  110. Riker AJ, Banfield WM, Wright WH, Keitt GW, Sagen HE (1930) Studies on infectious hairy-root of nursery apple trees. J Agric Res 41:507–540Google Scholar
  111. Rogowsky PM, Powell BS, Shirasu K, Lin TS, Morel P, Zyprian EM, Steck TR, Kado CI (1990) Molecular characterization of the vir regulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 28.63-kbp regulon cloned as a single unit. Plasmid 23:85–106PubMedCrossRefPubMedCentralGoogle Scholar
  112. Salmassi TM, Venkateswaren K, Satomi M, Newman DK, Hering JG (2002) Oxidation of Arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol J 19:53–66CrossRefGoogle Scholar
  113. Schrammeijer B, Beijersbergen A, Idler KB, Melchers LS, Thompson DV, Hooykaas PJ (2000) Sequence analysis of the vir-region from Agrobacterium tumefaciens octopine Ti plasmid pTi15955. J Exp Bot 51:1167–1169PubMedCrossRefPubMedCentralGoogle Scholar
  114. Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Ann Rev Genet 32:33–57PubMedCrossRefPubMedCentralGoogle Scholar
  115. Schütte G, Eckerstorfer M, Rastelli V, Reichenbecher W, Restrepo-Vassalli S, Ruohonen-Lehto M, Saucy AW, Mertens M (2017) Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ Sci Eur 29:5PubMedPubMedCentralCrossRefGoogle Scholar
  116. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37(1):67–75PubMedCrossRefPubMedCentralGoogle Scholar
  117. Sheerman S, Bevan MW (1988) A rapid transformation method for Solanum tuberosum using binary Agrobacterium tumefaciens vectors. Plant Cell Rep 7:13–16PubMedCrossRefPubMedCentralGoogle Scholar
  118. Sheikholeslam S, Okubara PA, Lin BC, Dutra JC, Kado CI (1978) Large and small plasmids in tumorigenic and cured non tumorigenic Agrobacterium tumefaciens and in Agrobacterium radiobacter. Microbiology 1978:132–135Google Scholar
  119. Siefert JL (2009) Defining the Mobilome. In: Gogarten MB, Gogarten JP, Olendzenski LC (eds) Horizontal gene transfer. Methods in molecular biology, vol 532. Humana Press, pp 13–27Google Scholar
  120. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  121. Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L, Suen G, Welch R, Almeida NF, Arnold F, Burton OT, Du Z, Ewing A, Godsy E, Heisel S, Houmiel KL, Jhaveri J, Lu J, Miller NM, Norton S, Chen Q, Phoolcharoen W, Ohlin V, Ondrusek D, Pride N, Stricklin SL, Sun J, Wheeler C, Wilson L, Zhu H, Wood DW (2009) Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511PubMedPubMedCentralCrossRefGoogle Scholar
  122. Smith EF, Townsend CO (1907) A plant-tumor of bacterial origin. Science 25:671–673PubMedCrossRefPubMedCentralGoogle Scholar
  123. Snow AA, Morán-Palma PM (1997) Commercialization of transgenic plants: potential ecological risks. BioSci 47:86–96CrossRefGoogle Scholar
  124. Spano L, Pomponi M, Costantino P, Van Slogteren GM, Tempé J (1982) Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1:291–300PubMedCrossRefPubMedCentralGoogle Scholar
  125. Starr MP, Weiss JE (1943) Growth of phytopathogenic bacteria in a synthetic asparagin medium. Phytopathology 33:314–318Google Scholar
  126. Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935PubMedCrossRefPubMedCentralGoogle Scholar
  127. Tindall BJ (2014) Agrobacterium radiobacter (Beijerinck and van Delden 1902) Conn 1942 has priority over Agrobacterium tumefaciens (Smith and Townsend 1907) Conn 1942 when the two are treated as members of the same species based on the principle of priority and Rule 23a, Note 1 as applied to the corresponding specific epithets. Opinion 94. Int J Syst Evol Microbiol 64:3590–3592PubMedCrossRefPubMedCentralGoogle Scholar
  128. Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252:169–170PubMedCrossRefPubMedCentralGoogle Scholar
  129. Van Larebeke N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Van Montagu M, Hernalsteens JP (1975) Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature 255:742–743PubMedCrossRefPubMedCentralGoogle Scholar
  130. Van Onckelen H, Prinsen E, Inzé D, Rüdeisheim P, Van Lijsebettens M, Follin A, Schell J, Van Montagu M, De Greef J (1986) Agrobacterium T-DNA gene 1 codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198:357–360CrossRefGoogle Scholar
  131. Velázquez E, Palomo JL, Rivas R, Guerra H, Peix A, Trujillo ME, García-Benavides P, Mateos PF, Wabiko H, Martínez-Molina E (2010) Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Syst Appl Microbiol 33:247–251PubMedCrossRefPubMedCentralGoogle Scholar
  132. Velázquez E, Carro L, Flores-Félix JD, Martínez-Hidalgo P, Menéndez E, Ramírez-Bahena MH, Mulas R, González-Andrés F, Martínez-Molina E, Peix A (2017) The legume nodule microbiome: a source of plant growth-promoting bacteria. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 41–70CrossRefGoogle Scholar
  133. Vilaine F, Casse-Delbart F (1987) Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206:17–23CrossRefGoogle Scholar
  134. Wang K, Herrera-Estrella L, Van Montagu M, Zambryski P (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38:455e62CrossRefGoogle Scholar
  135. Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123:255–264PubMedPubMedCentralGoogle Scholar
  136. White FF, Nester EW (1980) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141:1134–1141PubMedPubMedCentralGoogle Scholar
  137. White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–350CrossRefGoogle Scholar
  138. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44PubMedPubMedCentralGoogle Scholar
  139. Willmitzer L, De Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287:359–361CrossRefGoogle Scholar
  140. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedPubMedCentralGoogle Scholar
  141. Yadav NS, Van der Leyden J, Bennett DR, Barnes WM, Chilton MD (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79:6322e6CrossRefGoogle Scholar
  142. Yan J, Li Y, Han XZ, Chen WF, Zou WX, Xie Z, Li M (2017a) Agrobacterium deltaense sp. nov., an endophytic bacteria isolated from nodule of Sesbania cannabina. Arch Microbiol 199:1003–1009PubMedCrossRefPubMedCentralGoogle Scholar
  143. Yan J, Li Y, Yan H, Chen WF, Zhang X, Wang ET, Han XZ, Xie ZH (2017b) Agrobacterium salinitolerans sp. nov., a saline-alkaline-tolerant bacterium isolated from root nodule of Sesbania cannabina. Int J Syst Evol Microbiol 67:1906–1911PubMedCrossRefPubMedCentralGoogle Scholar
  144. Young JM (2004) Renaming of Agrobacterium larrymoorei Bouzar and Jones 2001 as Rhizobium larrymoorei (Bouzar and Jones 2001) comb. nov. Int J Syst Evol Microbiol 54:149PubMedCrossRefPubMedCentralGoogle Scholar
  145. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103PubMedCrossRefPubMedCentralGoogle Scholar
  146. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (2003) Classification and nomenclature of Agrobacterium and Rhizobium – a reply to Farrand et al. Int J Syst Evol Microbiol 53:1689–1695PubMedCrossRefPubMedCentralGoogle Scholar
  147. Zaenen I, van Larebeke N, Teuchy H, van Montagu M, Schell J (1974) Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86:109–116PubMedCrossRefPubMedCentralGoogle Scholar
  148. Zahradník J, Nunvar J, Pařízková H, Kolářová L, Palyzová A, Marešová H, Grulich M, Kyslíková E, Kyslík P (2018) Agrobacterium bohemicum sp. nov. isolated from poppy seed wastes in central Bohemia. Syst Appl Microbiol 41:184–190PubMedCrossRefPubMedCentralGoogle Scholar
  149. Zechner EL, Lang S, Schildbach JF (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond Ser B Biol Sci 367:1073–1087CrossRefGoogle Scholar
  150. Żurkowski W, Lorkiewicz Z (1979) Plasmid-mediated control of nodulation in Rhizobium trifolii. Arch Microbiol 123:195–201CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martha-Helena Ramírez-Bahena
    • 1
  • Alvaro Peix
    • 1
    • 2
  • Encarna Velázquez
    • 2
    • 3
    Email author
  1. 1.Instituto de Recursos Naturales y Agrobiología, IRNASA-CSICSalamancaSpain
  2. 2.Unidad Asociada Universidad de Salamanca-CSIC ‘Interacción Planta-Microorganismo’SalamancaSpain
  3. 3.Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Facultad de FarmaciaUniversidad de SalamancaSalamancaSpain

Personalised recommendations