Advertisement

Bacteremia in Neutropenic Patients

  • Sheila Hernandez
  • Ana Paula VelezEmail author
  • Jorge Lamarche
  • John N. Greene
Chapter

Abstract

Neutropenic patients are predisposed to polymicrobial infections that may cause substantial morbidity and mortality. Neutropenia is defined as a neutrophil count of <500 cells/mm3, or a count of <1000 cells/mm3 with a predicted decrease to <500 cells/mm3. Many factors play a role in the development of bacteremia such as the use of cytotoxic chemotherapy that leads to neutropenia, and also contributes to the disruption of skin and mucosal barriers. Moreover, exposure to pathogens is possible due to the frequent utilization of foley catheters and venous catheters in patients with cancer (Rolston et al., Clin Infect Dis 45(2):228–233, 2007). Lastly, the use of prophylactic antibiotics can lead to breakthrough MDR bacteria limiting antimicrobial options for therapy (Rolston et al., Clin Infect Dis 45(2):228–233, 2007; Perez et al., Clin Infect Dis 59(Suppl 5):S335–S339, 2014).

Both gram-negative and gram-positive organisms are culpable for infection in these immunocompromised patients. Although gram-negative bacteremia is still a leading cause in most recent years, infections by gram-positive bacteria have increased. This could be secondary to the wide use of long-term vascular catheters (Holland et al., Clin Infect Dis 59(Suppl 5):S331–S334, 2014; Baskaran et al., Int J Infect Dis: IJID: Off Publ Int Soc Infect Dis 11(6):513–517, 2007).

The most common microorganisms that cause bacteremia in neutropenic patients are the Enterobacteracie group, Pseudomonas aeruginosa , Staphylococcus aureus, Coagulase negative Staphylococci, and streptococcus species. In addition, other species will be discussed in this chapter (Rolston et al., Clin Infect Dis 45(2):228–233, 2007; Baskaran et al., Int J Infect Dis: IJID: Off Publ Int Soc Infect Dis 11(6):513–517, 2007; Yadegarynia et al., Caspian J Int Med 4(3):698–701, 2013).

Less common bacteria including nocardia and mycobacterium spp will not be discussed in this chapter.

Keywords

Viridans Group Streptococci (VGS) Toxic shock-like syndrome Stenotrophomona Maltophilia VRE colonization C. jeikeium Rothia mucilaginosa Fusobacterium necrophorum F. nucleatum Carbapenemase-producing Klebsiella pneumoniae (KPC) Pseudomonas aeruginosa MRSA Multidrug resistant (MDR) 

References

  1. 1.
    Tunkel AR, Sepkowitz KA. Infections caused by viridans streptococci in patients with neutropenia. Clin Infect Dis. 2002;34(11):1524–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Husain E, Whitehead S, Castell A, Thomas EE, Speert DP. Viridans streptococci bacteremia in children with malignancy: relevance of species identification and penicillin susceptibility. Pediatr Infect Dis J. 2005;24(6):563–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Wisplinghoff H, Reinert RR, Cornely O, Seifert H. Molecular relationships and antimicrobial susceptibilities of viridans group streptococci isolated from blood of neutropenic cancer patients. J Clin Microbiol. 1999;37(6):1876–80.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Razonable RR, Litzow MR, Khaliq Y, Piper KE, Rouse MS, Patel R. Bacteremia due to viridans group Streptococci with diminished susceptibility to Levofloxacin among neutropenic patients receiving levofloxacin prophylaxis. Clin Infect Dis. 2002;34(11):1469–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Dompeling EC, Donnelly JP, Raemaekers JM, De Pauw BE. Pre-emptive administration of corticosteroids prevents the development of ARDS associated with Streptococcus mitis bacteremia following chemotherapy with high-dose cytarabine. Ann Hematol. 1994;69(2):69–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Mokart D, van Craenenbroeck T, Lambert J, Textoris J, Brun JP, Sannini A, et al. Prognosis of acute respiratory distress syndrome in neutropenic cancer patients. Eur Respir J. 2012;40(1):169–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–61.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    El Zakhem A, Chaftari AM, Bahu R, El Helou G, Shelburne S, Jiang Y, et al. Central line-associated bloodstream infections caused by Staphylococcus aureus in cancer patients: clinical outcome and management. Ann Med. 2014;46(3):163–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Ghanem GA, Boktour M, Warneke C, Pham-Williams T, Kassis C, Bahna P, et al. Catheter-related Staphylococcus aureus bacteremia in cancer patients: high rate of complications with therapeutic implications. Medicine. 2007;86(1):54–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Holland TL, Arnold C, Fowler VG Jr. Clinical management of Staphylococcus aureus bacteremia: a review. JAMA. 2014;312(13):1330–41.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Garsin DA, Frank KL, Silanpaa J, Ausubel FM, Hartke A, Shankar N, et al. Pathogenesis and models of enterococcal infection. In: Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: from commensals to leading causes of drug resistant infection. Boston: Massachusetts Eye and Ear Infirmary; 2014.Google Scholar
  13. 13.
    Sanchez-Diaz AM, Cuartero C, Rodriguez JD, Lozano S, Alonso JM, Rodriguez-Dominguez M, et al. The rise of ampicillin-resistant Enterococcus faecium high-risk clones as a frequent intestinal colonizer in oncohaematological neutropenic patients on levofloxacin prophylaxis: a risk for bacteraemia? Clin Microbiol Infect: Off Publ Eur Soc Clin Microbiol Infect Dis. 2016;22(1):59.e1–8.CrossRefGoogle Scholar
  14. 14.
    Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev. 2000;13(4):686–707.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Levitus M, Perera TB. Vancomycin-Resistant Enterococci (VRE). StatPearls. Treasure Island: StatPearls Publishing StatPearls Publishing LLC.; 2018.Google Scholar
  16. 16.
    Alevizakos M, Gaitanidis A, Nasioudis D, Tori K, Flokas ME, Mylonakis E. Colonization with vancomycin-resistant enterococci and risk for bloodstream infection among patients with malignancy: a systematic review and meta-analysis. Open Forum Infect Dis. 2017;4(1):ofw246.PubMedGoogle Scholar
  17. 17.
    Bartash R, Nori P. Beta-lactam combination therapy for the treatment of Staphylococcus aureus and Enterococcus species bacteremia: a summary and appraisal of the evidence. Int J Infect Dis: IJID: Off Publ Int Soc Infect Dis. 2017;63:7–12.Google Scholar
  18. 18.
    Daisuke U, Oishi T, Yamane K, Terada K. Corynebacterium striatum bacteremia associated with a catheter-related blood stream infection. Case Rep Infect Dis. 2017;2017:2682149.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Watkins DA, Chahine A, Creger RJ, Jacobs MR, Lazarus HM. Corynebacterium striatum: a diphtheroid with pathogenic potential. Clin Infect Dis. 1993;17(1):21–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Rozdzinski E, Kern W, Schmeiser T, Kurrle E. Corynebacterium jeikeium bacteremia at a tertiary care center. Infection. 1991;19(4):201–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Dan M, Somer I, Knobel B, Gutman R. Cutaneous manifestations of infection with Corynebacterium group JK. Rev Infect Dis. 1988;10(6):1204–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Rezaei Bookani K, Marcus R, Cheikh E, Parish M, Salahuddin U. Corynebacterium jeikeium endocarditis: a case report and comprehensive review of an underestimated infection. IDCases. 2018;11:26–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Ramanan P, Barreto JN, Osmon DR, Tosh PK. Rothia bacteremia: a 10-year experience at Mayo Clinic, Rochester, Minnesota. J Clin Microbiol. 2014;52(9):3184–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, et al. Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus. GG Clin Infect Dis: Off Publ Infect Dis Soc Am. 2004;38(1):62–9.CrossRefGoogle Scholar
  25. 25.
    Antony SJ. Lactobacillemia: an emerging cause of infection in both the immunocompromised and the immunocompetent host. J Natl Med Assoc. 2000;92(2):83–6.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lassmann B, Gustafson DR, Wood CM, Rosenblatt JE. Reemergence of anaerobic bacteremia. Clin Infect Dis. 2007;44(7):895–900.PubMedCrossRefGoogle Scholar
  27. 27.
    Noriega LM, Van der Auwera P, Phan M, Daneau D, Meunier F, Gerain J, et al. Anaerobic bacteremia in a cancer center. Support Care Cancer: Off J Multinat Assoc Support Care Cancer. 1993;1(5):250–5.CrossRefGoogle Scholar
  28. 28.
    Zahar JR, Farhat H, Chachaty E, Meshaka P, Antoun S, Nitenberg G. Incidence and clinical significance of anaerobic bacteraemia in cancer patients: a 6-year retrospective study. Clin Microbiol Infect. 2005;11(9):724–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Riordan T. Human infection with Fusobacterium necrophorum (Necrobacillosis), with a focus on Lemierre’s syndrome. Clin Microbiol Rev. 2007;20(4):622–59.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Centor RM, Atkinson TP, Ratliff AE, Xiao L, Crabb DM, Estrada CA, et al. The clinical presentation of Fusobacterium-positive and streptococcal-positive pharyngitis in a university health clinic: a cross-sectional study. Ann Intern Med. 2015;162(4):241–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Candoni A, Fili C, Trevisan R, Silvestri F, Fanin R. Fusobacterium nucleatum: a rare cause of bacteremia in neutropenic patients with leukemia and lymphoma. Clin Microbiol Infect. 2003;9(11):1112–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Landsaat PM, van der Lelie H, Bongaerts G, Kuijper EJ. Fusobacterium nucleatum, a new invasive pathogen in neutropenic patients? Scand J Infect Dis. 1995;27(1):83–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Jensen A, Hansen TM, Bank S, Kristensen LH, Prag J. Fusobacterium necrophorum tonsillitis: an important cause of tonsillitis in adolescents and young adults. Clin Microbiol Infect: Off Publ Eur Soc Clin Microbiol Infect Dis. 2015;21(3):266.e1–3.CrossRefGoogle Scholar
  34. 34.
    Gustinetti G, Mikulska M. Bloodstream infections in neutropenic cancer patients: a practical update. Virulence. 2016;7(3):280–97.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Olson D, Yacoub AT, Gjini AD, Domingo G, Greene JN. Escherichia coli: an important pathogen in patients with hematologic malignancies. Mediterranean J Hematol Infect Dis. 2014;6(1):e2014068.CrossRefGoogle Scholar
  36. 36.
    Carratala J, Fernandez-Sevilla A, Tubau F, Callis M, Gudiol F. Emergence of quinolone-resistant Escherichia coli bacteremia in neutropenic patients with cancer who have received prophylactic norfloxacin. Clin Infect Dis. 1995;20(3):557–60.. discussion 61–3PubMedCrossRefGoogle Scholar
  37. 37.
    Krcmery V, Spanik S, Mrazova M, Trupl J, Grausova S, Grey E, et al. Bacteremias caused by Escherichia coli in cancer patients – analysis of 65 episodes. Int J Infect Dis: IJID: Off Publ Int Soc Infect Dis. 2002;6(1):69–73.Google Scholar
  38. 38.
    Ko WC, Paterson DL, Sagnimeni AJ, Hansen DS, Von Gottberg A, Mohapatra S, et al. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis. 2002;8(2):160–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tofas P, Skiada A, Angelopoulou M, Sipsas N, Pavlopoulou I, Tsaousi S, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections in neutropenic patients with haematological malignancies or aplastic anaemia: analysis of 50 cases. Int J Antimicrob Agents. 2016;47(4):335–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Girometti N, Lewis RE, Giannella M, Ambretti S, Bartoletti M, Tedeschi S, et al. Klebsiella pneumoniae bloodstream infection: epidemiology and impact of inappropriate empirical therapy. Medicine. 2014;93(17):298–309.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003;37(6):745–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother. 2005;49(4):1306–11.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kim HS, Park BK, Kim SK, Han SB, Lee JW, Lee DG, et al. Clinical characteristics and outcomes of Pseudomonas aeruginosa bacteremia in febrile neutropenic children and adolescents with the impact of antibiotic resistance: a retrospective study. BMC Infect Dis. 2017;17(1):500.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kim YJ, Jun YH, Kim YR, Park KG, Park YJ, Kang JY, et al. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect Dis. 2014;14:161.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lopez-Calleja AI, Morilla Morales E, Nunez Medina R, Fernandez Esgueva M, Sahagun Pareja J, Garcia-Lechuz Moya JM, et al. Antimicrobial activity of ceftolozane-tazobactam against multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa clinical isolates from a Spanish hospital. Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia. 2019;32(1):68–72.Google Scholar
  46. 46.
    Micozzi A, Venditti M, Monaco M, Friedrich A, Taglietti F, Santilli S, et al. Bacteremia due to Stenotrophomonas maltophilia in patients with hematologic malignancies. Clin Infect Dis. 2000;31(3):705–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Cho SY, Lee DG, Choi SM, Park C, Chun HS, Park YJ, et al. Stenotrophomonas maltophilia bloodstream infection in patients with hematologic malignancies: a retrospective study and in vitro activities of antimicrobial combinations. BMC Infect Dis. 2015;15:69.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gokhan Gozel M, Celik C, Elaldi N. Stenotrophomonas maltophilia infections in adults: primary bacteremia and pneumonia. Jundishapur J Microbiol. 2015;8(8):e23569.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Al-Anazi KA, Al-Jasser AM. Infections caused by Stenotrophomonas maltophilia in recipients of hematopoietic stem cell transplantation. Front Oncol. 2014;4:232.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Wei C, Ni W, Cai X, Zhao J, Cui J. Evaluation of trimethoprim/sulfamethoxazole (SXT), minocycline, tigecycline, moxifloxacin, and ceftazidime alone and in combinations for SXT-susceptible and SXT-resistant stenotrophomonas maltophilia by in vitro time-kill experiments. PLoS One. 2016;11(3):e0152132.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Looney WJ, Narita M, Muhlemann K. Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis. 2009;9(5):312–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Ballo O, Tarazzit I, Stratmann J, Reinheimer C, Hogardt M, Wichelhaus TA, et al. Colonization with multidrug resistant organisms determines the clinical course of patients with acute myeloid leukemia undergoing intensive induction chemotherapy. PLoS One. 2019;14(1):e0210991.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Satlin MJ, Cohen N, Ma KC, Gedrimaite Z, Soave R, Askin G, et al. Bacteremia due to carbapenem-resistant Enterobacteriaceae in neutropenic patients with hematologic malignancies. J Inf Secur. 2016;73(4):336–45.Google Scholar
  54. 54.
    Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–61.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett. 2006;258(1):72–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Parruti G, Frattari A, Polilli E, Savini V, Sciacca A, Consorte A, et al. Cure of recurring Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae septic shock episodes due to complicated soft tissue infection using a ceftazidime and avibactam-based regimen: a case report. J Med Case Rep. 2019;13(1):20.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Athans V, Neuner EA, Hassouna H, Richter SS, Keller G, Castanheira M, et al. Meropenem-vaborbactam as salvage therapy for ceftazidime-avibactam-resistant klebsiella pneumoniae bacteremia and abscess in a liver transplant recipient. Antimicrob Agents Chemother. 2019;63(1):1–8.Google Scholar
  59. 59.
    Marshall S, Hujer AM, Rojas LJ, Papp-Wallace KM, Humphries RM, Spellberg B, et al. Can ceftazidime-avibactam and aztreonam overcome beta-lactam resistance conferred by metallo-beta-lactamases in enterobacteriaceae? Antimicrob Agents Chemother. 2017;61(4):1–9.Google Scholar
  60. 60.
    Karaiskos I, Galani I, Souli M, Giamarellou H. Novel beta-lactam-beta-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin Drug Metab Toxicol. 2019;15(2):133–49.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sheila Hernandez
    • 1
  • Ana Paula Velez
    • 2
    Email author
  • Jorge Lamarche
    • 3
  • John N. Greene
    • 4
  1. 1.International Scholar at Moffitt Cancer CenterTampaUSA
  2. 2.University of South FloridaTampaUSA
  3. 3.USF Morsani College of Medicine James Haley VA HospitalJames Haley VA HospitalTampaUSA
  4. 4.USF Morsani College of MedicineMoffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations