Analgesia, Sedation, and Neuromuscular Blockade in PARDS

  • Christopher Heard
  • Joseph Tobias


Sedation and analgesia are provided to most children with pediatric acute respiratory distress syndrome in order to keep them comfortable, facilitate synchrony with the ventilator, and prevent dislodgement of life-sustaining instruments. This chapter reviews commonly used medications including opiates, benzodiazepines, and dexmedetomidine and discusses clinically relevant advantages and disadvantages. Neuromuscular-blocking agents are also commonly used in this patient population and have been shown to improve outcomes in adults with acute respiratory distress syndrome. Commonly used agents are reviewed. Adverse effects of all of these medication classes are also reviewed, including delirium, withdrawal, and long-term neurologic morbidity.


Sedation Analgesia Neuromuscular antagonists Benzodiazepines Opioids Delirium Withdrawal 


  1. 1.
    Harris J, Ramelet A, Dijk M, et al. Clinical recommendations for pain, sedation, withdrawal and delirium assessment in critically ill infants and children: an ESPNIC position statement for healthcare professionals. Intensive Care Med. 2016;42:972–86.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Jouvet P, Thomas NJ, Willson DF, et al. Pediatric acute respiratory distress syndrome: consensus recommendations from the pediatric acute lung injury consensus conference. Pediatric critical care medicine, vol. 16; 2015. p. 428–39.Google Scholar
  3. 3.
    Jonghe BD. Permissive hypercapnia: does a high Paco2 level require high sedative doses? Crit Care Med. 2006;34:1833–4.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Marcy TW, Marini JJ. Inverse ratio ventilation in ARDS. Rationale and implementation. Chest. 1991;100:494–504.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zhou Y, Jin X, Lv Y, et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med. 2017;43:1648–59.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sessler CN. Sedation, analgesia, and neuromuscular blockade for high-frequency oscillatory ventilation. Crit Care Med. 2005;33:S209–16.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Burry LD, Seto K, Rose L, Lapinsky SC, Mehta S. Use of sedation and neuromuscular blockers in critically ill adults receiving high-frequency oscillatory ventilation. Ann Pharmacother. 2013;47:1122–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Schneider JB, Sweberg T, Asaro LA, et al. Sedation Management in Children Supported on extracorporeal membrane oxygenation for acute respiratory failure. Crit Care Med. 2017;45:e1001–10.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hungerford J, Venkatraman R, Ramesh A, Hall M, Tobias J. 883: Dexmedetomidine for sedation during non-invasive ventilation in pediatric patients. Crit Care Med. 2013;41:A221.CrossRefGoogle Scholar
  10. 10.
    Zagli G, Tarantini F, Bonizzoli M, et al. Altered pharmacology in the intensive care unit patient. Fundam Clin Pharmacol. 2008;22:493–501.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Welzing L, Oberthuer A, Junghaenel S, Harnischmacher U, Stutzer H, Roth B. Remifentanil/midazolam versus fentanyl/midazolam for analgesia and sedation of mechanically ventilated neonates and young infants: a randomized controlled trial. Intensive Care Med. 2012;38:1017–24. Scholar
  12. 12.
    Zuppa AF, Curley MAQ. Sedation analgesia and neuromuscular blockade in pediatric critical care. Pediatr Clin North Am. 2017;64:1103–16.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: part 1—pharmacokinetics. Paediatr Anaesth. 1997;7:5–11.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Latta KS, Ginsberg B, Barkin RL. Meperidine: a critical review. Am J Ther. 2002;9:53–68.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Germain J, Aneja R, Heard CMB, Dias M. Continuous remifentanil for pediatric neurosurgery patients. Pediatr Neurosurg. 2000;33:227–9.CrossRefGoogle Scholar
  16. 16.
    Sigel E. Mapping of the benzodiazepine recognition site on GABA(a) receptors. Curr Top Med Chem. 2002;2:833–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Saegusa K, Furukawa Y, Ogiwara Y, et al. Pharmacologic basis of responses to midazolam in the isolated, cross-perfused, canine right atrium. Anesth Analg. 1987;66:711–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Bodenham A, Culank LS, Park GR. Propofol infusion and green urine. Lancet. 1987;2:740.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Testerman GM, Chow TT, Easparam St. Propofol infusion syndrome: an algorithm for prevention. Am Surg. 2011;77(12):1714–5.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Markovitz BP. Proving propofol “safe” for continuous sedation in the PICU is an impossible task. Pediatr Crit Care Med. 2014;15(6):577.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Baughman VL, Cunningham F, Layden T, et al. Pharmacokinetic/pharmacodynamic effects of dexmedetomidine in patients with hepatic failure. Anesth Analg. 2000;90:S391.Google Scholar
  22. 22.
    Pandharipande P, Sanders R, Girard T, et al. Research effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14:R38.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tobias JD. Dexmedetomidine: applications in pediatric critical care and pediatric anesthesiology. Pediatr Crit Care Med. 2007;8:115–31.CrossRefGoogle Scholar
  24. 24.
    Jiang L, et al. A retrospective comparison of Dexmedetomidine versus midazolam for pediatric patients with congenital heart disease requiring postoperative sedation. Pediatr Cardiol. 2015;36:993.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Grant MJC, Schneider JB, Asaro LA, et al. Dexmedetomidine use in critically ill children with acute respiratory failure. Pediatr Crit Care Med. 2016;17:1131–41.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kenyon CJ, McNeil LM, Fraser R. Comparison of the effects of etomidate, thiopentone and propofol on cortisol synthesis. Br J Anaesth. 1985;57:509–11.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Cotten JF, et al. Methoxycarbonyl-etomidate: a novel rapidly metabolized and ultra-short-acting etomidate analogue that does not produce prolonged adrenocortical suppression, vol. 111; 2009. p. 240.Google Scholar
  28. 28.
    Payen J, et al. Corticosteroid after etomidate in critically ill patients: a randomized controlled trial. Crit Care Med. 2012;40(1):29–35.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lundstrøm LH, Duez CHV, Nørskov AK, Rosenstock CV, Thomsen JL, Møller AM, Strande S, Wetterslev J. Effects of avoidance or use of neuromuscular blocking agents on outcomes in tracheal intubation: a Cochrane systematic review. Br J Anaesth. 2018;120:1381–93.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sharpe MD. The use of muscle relaxants in the intensive care unit. Can J Anaesth. 1992;39:949–62.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Bryant J, Krishna SG, Tobias JD. The difficult airway in pediatrics. Advan Anesth. 2013;31:31–60.CrossRefGoogle Scholar
  32. 32.
    Meistelman C, Agoston S, Kersten UW, et al. Pharmacokinetics and pharmacodynamics of vecuronium and pancuronium in anesthetized children. Anesth Analg. 1986;65:1319–23.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Cooper R, Mirakhur RK, Clarke RSJ, Boulex Z. Comparison of intubating conditions after administration of rocuronium and suxamethonium. Br J Anaesth. 1992;69:269–73.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Mazurek AJ, Rae B, Hann S, et al. Rocuronium versus succinylcholine: are they equally effective during rapid-sequence induction of anesthesia. Anesth Analg. 1998;87:1259–62.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Scheiber G, Ribeiro FC, Marichal A, et al. Intubating conditions and onset of action after rocuronium, vecuronium and atracurium in young children. Anesth Analg. 1996;83:320–4.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Mathew A, Sharma AN, Ganapathi P, Shankaranarayana P, Nazim M, Aiyappa DS. Intraoperative hemodynamics with vecuronium bromide and rocuronium for maintenance under general anesthesia. Anesth Essays Res. 2016;10:59–64.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Wierda JM, Meretoja OA, Taivainen T, et al. Pharmacokinetics and pharmacodynamic modeling of rocuronium in infants and children. Br J Anaesth. 1997;78:690–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Robertson EN, Driessen JJ, Booij LH. Pharmacokinetics and pharmacodynamics of rocuronium in patients with and without renal failure. Eur J Anaesthesiol. 2005;22:4–10.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Driessen JJ, Robertson EN, Van Egmond J, et al. Time-course action of rocuronium 0.3 mg/kg in children with and without endstage renal failure. Pediatr Anesth. 2002;12:507–10.CrossRefGoogle Scholar
  40. 40.
    Savarese et al. The future of the benzylisoquinolinium relaxants. Acta Anaesthesiol Scand. 1995;106:91–3.CrossRefGoogle Scholar
  41. 41.
    Taivainen T, Meakin GH, Meretoja OA, et al. The safety and efficacy of cisatracurium 0.15 mg/kg during nitrous oxide-opioid anaesthesia in infants and children. Anaesthesia. 2000;55:1047–51.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Fodale V, Santamaria LB. Laudanosine, an atracurium and cisatracurium metabolite. Eur J Anaesthesiol. 2002;19:466–73.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Testelmans, et al. Infusions of rocuronium and cisatracurium exert different effects on rat diaphragm function. Intensive Care Med. 2007;33(5):872–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Tobias JD. Current evidence for the use of sugammadex in children. Paediatr Anaesth. 2017;27:118–25.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Naguib M. Suggamadex: another milestone in clinical neuromuscular pharmacology. Anesth Analg. 2007;104:575–81.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Rosenberg JB, Eisen LA. Eye care in the intensive care unit: narrative review and meta-analysis. Crit Care Med. 2008;36:3151–5.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Sivasankar S, Jasper S, Simon S, et al. Eye care in ICU. Indian J Crit Care Med. 2006;10:11–4.CrossRefGoogle Scholar
  48. 48.
    Hodgin KE, Nordon-Craft A, McFann KK, et al. Physical therapy utilization in intensive care units: results from a national survey. Crit Care Med. 2009;37:561–56.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Watling SM, Dasta JF. Prolonged paralysis in intensive care unit patients after the use of neuromuscular blocking agents: a review of the literature. Crit Care Med. 1994;22:884–93.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Leatherman J, Fluegel W, David W, et al. Muscle weakness in mechanically ventilated patients with severe asthma. Am J Resp Crit Care Med. 1996;153:1686–90.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sladen RN. Neuromuscular blocking agents in the intensive care unit: a two edged sword. Crit Care Med. 1995;23:423–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Forel JM, Roch A, Marin V, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34:2749–57.CrossRefGoogle Scholar
  53. 53.
    Gainnier M, Roch A, Forel JM, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32:113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Papazian L, Forel JM, Gacouin A, et al. ACURASYS study investigators: neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Alhazzani W, Alshahrani M, Jaeschke R, et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2013;17:R43.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lyu G, Wang X, Jiang W, et al. Clinical study of early use of neuromuscular blocking agents in patients with severe sepsis and acute respiratory distress syndrome. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014;26:325–9.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Anand KJ, et al. Tolerance and withdrawal from prolonged opioid use in critically ill children. Pediatrics. 2010;125(5):e1208–25.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Best KM, Boullata JI, Curley MAQ. Risk factors associated with iatrogenic opioid and benzodiazepine withdrawal in critically ill pediatric patients: a systematic review and conceptual model. Pediatr Crit Care Med. 2015;16:175–83.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Katz R, Kelly HW, His A. Prospective study on the occurrence of withdrawal in critically ill children who receive fentanyl by continuous infusion. Crit Care Med. 1994;22:763–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Franck LS, Scoppettuolo LA, Wypij D, Curley MAQ. Validity and generalizability of the withdrawal assessment Tool-1 (WAT-1) for monitoring iatrogenic withdrawal syndrome in pediatric patients. Pain. 2012;153:142–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ista E, Dijk M, Hoog M, Tibboel D, Duivenvoorden H. Construction of the Sophia observation withdrawal symptoms-scale (SOS) for critically ill children. Intensive Care Med. 2009;35:1075–81.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sanchez-Pinto LN, Nelson LP, Lieu P, et al. Implementation of a risk-stratified opioid weaning protocol in a pediatric intensive care unit. J Crit Care. 2018;43:214–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Siddappa R, Fletcher JE, Heard AM, et al. Methadone dosage for prevention of opioid withdrawal in children. Paediatr Anaesth. 2003;13:805–10.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Oschman A, McCabe T, Kuhn RJ. Dexmedetomidine for opioid and benzodiazepine withdrawal in pediatric patients. Am J Health Syst Pharm. 2011;68:1233–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Vossen AC, Nuland M, Ista EG, Wildt SN, Hanff LM. Oral lorazepam can be substituted for intravenous midazolam when weaning paediatric intensive care patients off sedation. Acta Paediatr. 2018;107:1594–600.PubMedCentralCrossRefGoogle Scholar
  66. 66.
    Haenecour AS, Seto W, Urbain CM, Stephens D, Laussen PC, Balit CR. Prolonged Dexmedetomidine infusion and drug withdrawal in critically ill children. J Pediatr Pharmacol Ther. 2017;22:453–60.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Lardieri AB, Fusco NM, Simone S, Walker LK, Morgan JA, Parbuoni KA. Effects of clonidine on withdrawal from long-term Dexmedetomidine in the pediatric patient. J Pediatr Pharmacol Ther. 2015;20:45–53.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Smith HA, et al. Delirium: an emerging frontier in management of critically ill children. Crit Care Clinics. 2010.Google Scholar
  69. 69.
    Traube C, et al. Pediatric delirium in critically-ill children: an international point prevalence study. Crit Care Med. 2018;45(4):584–90.CrossRefGoogle Scholar
  70. 70.
    Smith HA, et al. Diagnosing delirium in critically ill children: validity and reliability of the pediatric confusion assessment method for the intensive care unit. Crit Care Med. 2017.Google Scholar
  71. 71.
    Turkel SB, Hanft A. The pharmacologic management of delirium in children and adolescents. Paediatr Drugs. 2014;16(4):267–74.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Mody K, Kaur S, Mauer EA, et al. Benzodiazepines and development of delirium in critically ill children: estimating the causal effect. Crit Care Med. 2018;46:1486–91.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Smith HA, Boyd J, Fuchs DC, et al. Diagnosing delirium in critically ill children: validity and reliability of the pediatric confusion assessment method for the intensive care unit. Crit Care Med. 2011;39:150–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Skrobik Y, et al. Low-dose nocturnal dexmedetomidine prevents ICU delirium. a randomized, placebo-controlled trial. AJRCCM. 2018;197(9):1147–56.Google Scholar
  75. 75.
    Simone S, Edwards S, Lardieri A, et al. Implementation of an ICU bundle: an Interprofessional quality improvement project to enhance delirium management and monitor delirium prevalence in a single PICU. Pediatr Crit Care Med. 2017;18:531–40.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Kramer B, Joshi P, Heard C. Noise pollution levels in the pediatric intensive care unit. J Crit Care. 2016;36:111–5.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Schieveld JN, Leroy PL, van Os J, Nicolai J, Vos GD, Leentjens AF. Pediatric delirium in critical illness: phenomenology, clinical correlates and treatment response in 40 cases in the pediatric intensive care unit. Intensive Care Med. 2007;33(6):1033–40.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Girard TD, et al. Haloperidol and ziprasidone for treatment of delirium in critical illness. N Engl J Med. 2019;380(18):1779–80.PubMedPubMedCentralGoogle Scholar
  79. 79.
    MacLaren R. Immunosedation: a consideration for sepsis. Crit Care. 2009;13:191.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sanders RD, Hussell T, Maze M. Sedation & immunomodulation. Crit Care Clin. 2009;25:551–70.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kim SN, et al. Midazolam inhibits proinflammatory mediators in the lipopolysaccharide-activated macrophage. Anesthesiology. 2006;105(1):105–10.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Chen L, Meng K, Su W, Fu Y. The effect of continuous sedation therapy on immunomodulation, plasma levels of antioxidants, and indicators of tissue repair in post-burn Sepsis patients. Cell Biochem Biophys. 2015;73:473–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Heil LBB, Silva PL, Pelosi P, Rocco PRM. Immunomodulatory effects of anesthetics in obese patients. World J Crit Care Med. 2017;6:140.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cruz F, Rocco P, Pelosi P. Anti-inflammatory properties of anesthetic agents. Crit Care. 2017;21:67.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wang K, et al. Effects of dexmedetomidine on inflammatory factors, T lymphocyte subsets and expression of NF-κB in peripheral blood mononuclear cells in patients receiving radical surgery of colon carcinoma. Oncol Lett. 2018;15(5):7153–7.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Brattebø G, Hofoss D, Flaatten H, et al. Effect of scoring system and protocol for sedation on duration of patients’ need for ventilator support in a surgical intensive care unit. BMJ. 2002;324:1386–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Curley MAQ, Wypij D, Watson RS, et al. Protocolized sedation vs usual care in pediatric patients mechanically ventilated for acute respiratory failure: a randomized clinical trial. JAMA. 2015;313:379–89.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kerson AG, et al. Validity of the Richmond Agitation-Sedation Scale (RASS) in critically ill children. J Intens Care. 2016;4:–65.Google Scholar
  89. 89.
    Curley MA. State Behavioral Scale (SBS): a sedation assessment instrument for infants and young children supported on mechanical ventilation. Pediatr Crit Care Med. 2006;7(2):107–14.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Berkenbosch JW, Fichter CR, Tobias JD. The correlation of the bispectral index monitor with clinical sedation scores during mechanical ventilation in the pediatric intensive care unit. Anesth Analg. 2002;94:506–11.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Aneja R, Heard AMB, Fletcher JE, Heard CMB. Sedation monitoring of children by the Bispectral index in the pediatric intensive care unit. Pediatr Crit Care Med. 2003;4:60–4.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Vet NJ, de Wildt SN, Verlaat CWM, et al. A randomized controlled trial of daily sedation interruption in critically ill children. Intensive Care Med. 2016;42:233.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Best KM, Asaro LA, Franck LS, et al. Patterns of sedation weaning in critically ill children recovering from acute respiratory failure. Pediatr Crit Care Med. 2016;17:19–29.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lee J, Loepke AW. Does pediatric anesthesia cause brain damage? – addressing parental and provider concerns in light of compelling animal studies and seemingly ambivalent human data. Korean J Anesthesiol. 2018;71:255–73.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Blaylock M, Engelhardt T, Bissonnette B. Fundamentals of neuronal apoptosis relevant to pediatric anesthesia. Paediatr Anaesth. 2010;20:383–95.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Davidson AJ, Disma N, Graaff d, Jurgen C, et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. The Lancet. 2016;387:239–50.CrossRefGoogle Scholar
  97. 97.
    ME MC, et al. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet. 2019;393(10172):664–77.CrossRefGoogle Scholar
  98. 98.
    Kamat PP, et al. Sedative and anesthetic neurotoxicity in infants and young children: not just an operating room concern. J Pediatr. 2019;204:285–90.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christopher Heard
    • 1
  • Joseph Tobias
    • 2
  1. 1.Department of Anesthesiology and Division of Pediatric Critical CareJohn R. Oishei Children’s Hospital, University at BuffaloBuffaloUSA
  2. 2.Department of Anesthesiology & Pain MedicineNationwide Children’s Hospital, The Ohio State UniversityColumbusUSA

Personalised recommendations