Diving for Sparse Partially-Reflexive Generalized Inverses

  • Victor K. Fuentes
  • Marcia Fampa
  • Jon LeeEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)


Generalized inverses form a set of key tools in matrix algebra. For large-scale applications, sparsity is highly desirable, and so sparse generalized inverses have been studied. One such family is based on relaxing the well-known Moore-Penrose properties. One of those properties is non-linear, and so we develop a convex-programming relaxation and an associated “diving” heuristic to achieve a good trade-off between sparsity and satisfaction of the non-linear Moore-Penrose property.


Generalized inverse Reflexive generalized inverse Moore-Penrose pseudoinverse Sparse optimization 


  1. 1.
    Achterberg, T.: Constraint integer programming. Ph.D. thesis, Berlin Institute of Technology (2007).
  2. 2.
    Berthold, T.: Primal Heuristics for Mixed Integer Programming. Master’s thesis, Technische Universität Berlin (2006)Google Scholar
  3. 3.
    Berthold, T.: Heuristics of the branch-cut-and-price-framework scip. In: Kalcsics, J., Nickel, S. (eds.) Operations Research Proceedings 2007, pp. 31–36. Springer, Berlin (2008)Google Scholar
  4. 4.
    Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve mip solutions. Math. Progr. Ser. A 102, 71–90 (2005). Scholar
  5. 5.
    Dokmanić, I., Kolundžija, M., Vetterli, M.: Beyond Moore-Penrose: Sparse pseudoinverse. In: ICASSP, vol. 2013, pp. 6526–6530 (2013)Google Scholar
  6. 6.
    Dokmanić, I., Gribonval, R.: Beyond Moore-Penrose Part I: Generalized Inverses that Minimize Matrix Norms (2017).
  7. 7.
    Dokmanić, I., Gribonval, R.: Beyond Moore-Penrose Part II: The Sparse Pseudoinverse (2017).
  8. 8.
    Eckstein, J., Nediak, M.: Pivot, cut, and dive: a heuristic for 0–1 mixed integer programming. J. Heuristics 13, 471–503 (2007)Google Scholar
  9. 9.
    Fampa, M., Lee, J.: Efficient treatment of bilinear forms in global optimization (2018). arXiv:1803.07625
  10. 10.
    Fampa, M., Lee, J.: On sparse reflexive generalized inverse. Oper. Res. Lett. 46(6), 605–610 (2018)Google Scholar
  11. 11.
    Fuentes, V., Fampa, M., Lee, J.: Sparse pseudoinverses via LP and SDP relaxations of Moore-Penrose. CLAIO 2016, 343–350 (2016)Google Scholar
  12. 12.
    Gerard, D., Köppe, M., Louveaux, Q.: Guided dive for the spatial branch-and-bound. J. Glob. Optim. 68(4), 685–711 (2017)Google Scholar
  13. 13.
    Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)Google Scholar
  14. 14.
    Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51, 406–413 (1955)Google Scholar
  15. 15.
    Rao, C., Mitra, S.: Generalized Inverse of Matrices and Its Applications. Probability and Statistics Series. Wiley (1971)Google Scholar
  16. 16.
    Rohde, C.: Contributions to the theory, computation and application of generalized inverses. Ph.D. thesis, University of North Carolina, Raleigh, N.C. (May 1964).
  17. 17.
    Xu, L., Fampa, M., Lee, J.: Aspects of symmetry for sparse reflexive generalized inverses (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA
  2. 2.Universidade Federal do Rio de JaneiroRio de JaneiroBrasil

Personalised recommendations