Advertisement

The Practice of Moving to Big Data on the Case of the NoSQL Database, Clickhouse

  • Baktagul ImashevaEmail author
  • Nakispekov Azamat
  • Andrey Sidelkovskiy
  • Ainur Sidelkovskaya
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

In the modern world, every technology and user generate a large amount of data. Each data carries value to some degree. Therefore, the concept of big data is actively developing because the idea of big data is to generate a new value. Addressing big data is an invocation and time-demanding job that needs a large computational infrastructure to ensure successful data processing, storage, and analysis. This report is intended to compare how one of the big data storage, Clickhouse, can replace the relational database, Oracle. This paper motivation is to obtain an understanding of the benefit and drawbacks of NoSQL database, in the case of Clickhouse to supporting a huge amount of data.

Keywords

Big data Big data value chain Data storage NoSQL Clickhouse Column database 

References

  1. 1.
    Laney, D.: 3-D Data Management: Controlling Data Volume, Velocity, and Variety. META Group Res Note 6, Stamford (2001)Google Scholar
  2. 2.
    Loukides, M.: What is Data Science. O’Reilly Media (2010)Google Scholar
  3. 3.
    Jacobs, A.: The pathologies of big data. Commun. ACM 8(52) (2009)Google Scholar
  4. 4.
    Cavanillas, M., Curry, E., Wahlster, W.: New Horizons for a Data-Driven Economy: A Roadmap for Usage and Exploitation of Big Data in Europe. Springer Open, Cham (2016)Google Scholar
  5. 5.
    TechAmerica Foundation.: Demystifying Big Data: A Practical Guide To Transforming The Business of Government. TechAmerica Foundation, Washington (2012)Google Scholar
  6. 6.
    Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manag. 2(35), 137–144 (2015)Google Scholar
  7. 7.
    IBM Analytics. https://www.ibmbigdatahub.com/infographic/four-vs-big-data. Last accessed 05 Feb 2019
  8. 8.
    Bhadani, A., Jothimani, D.: Big data: challenges, opportunities and realities. In: Singh, M.K., Kumar, D.G. (eds.) Effective Big Data Management and Opportunities for Implementation 2016, pp. 1–24. IGI Global, Pennsylvania (2016)Google Scholar
  9. 9.
    Rajkumar, B., Rodrigo, C.A., Vahid, D.: Big Data Principles and Paradigms. Morgan Kaufmann, Cambridge (2016)Google Scholar
  10. 10.
    Sakr, S.: Big Data 2.0 Processing Systems: A Survey. Springer Publishing Company, Incorporated (2016)Google Scholar
  11. 11.
    Curry, E., Freitas, A., Ngonga, A.: D2.2.2 Final Version of Technical White Paper. Big Data Public Private Forum, pp. 2–8 (2014)Google Scholar
  12. 12.
    Lehmann, D., Fekete, D., Vossen, G.: Technology Selection for Big Data and Analytical Applications. European Research Center for Information Systems No. 27. (2016)Google Scholar
  13. 13.
  14. 14.
    Rubin, A.: Column Store Database Benchmarks: MariaDB ColumnStore vs. Clickhouse vs. Apache Spark. https://www.percona.com/blog/2017/03/17/column-store-database-benchmarks-mariadb-columnstore-vs-clickhouse-vs-apache-spark/. Last accessed 17 Jan 2019
  15. 15.
    Yishan, L., Sathiamoorthy, M.: A performance comparison of SQL and NoSQL databases. In: Communications, Computers and Signal Processing. New Zealand (2013)Google Scholar
  16. 16.
    Altunity. ClickHouse for Time Series. https://www.altinity.com/blog/clickhouse-for-time-series. Last accessed 05 Jan 2019
  17. 17.
    Moniruzzaman, A., Hossain, S.: NoSQL database: new era of databases for big data analytics-classification, characteristics and comparison. Int. J. Database Theory Appl. 6(4) (2013)Google Scholar
  18. 18.
    Leventov, R.: Comparison of the Open Source OLAP Systems for Big Data: ClickHouse, Druid and Pinot. https://medium.com/@leventov/comparison-of-the-open-source-olap-systems-for-big-data-clickhouse-druid-and-pinot-8e042a5ed1c7. Last accessed 07 Jan 2019
  19. 19.
    Yandex. Distinctive Features of ClickHouse. https://clickhouse.yandex/docs/en/introduction/distinctive_features/. Last accessed 07 Jan 2019
  20. 20.
    Oracle. Database Limits. https://docs.oracle.com/cd/B28359_01/server.111/b28320/limits.htm#REFRN004. Last accessed 07 Jan 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Baktagul Imasheva
    • 1
    • 3
    Email author
  • Nakispekov Azamat
    • 2
    • 3
  • Andrey Sidelkovskiy
    • 3
  • Ainur Sidelkovskaya
    • 3
  1. 1.International Information Technology UniversityAlmatyKazakhstan
  2. 2.German-Kazakh UniversityAlmatyKazakhstan
  3. 3.JSC “A2 data”AlmatyKazakhstan

Personalised recommendations