A Mixture Design of Experiments Approach for Genetic Algorithm Tuning Applied to Multi-objective Optimization

  • Taynara Incerti de PaulaEmail author
  • Guilherme Ferreira Gomes
  • José Henrique de Freitas Gomes
  • Anderson Paulo de Paiva
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)


This study applies mixture design of experiments combined with process variables in order to assess the effect of the genetic algorithm parameters in the solution of a multi-objective problem with weighted objective functions. The proposed method allows defining which combination of parameters and weights should be assigned to the objective functions in order to achieve target results. A study case of a flux cored arc welding process is presented. Four responses were optimized by using the global criterion method and three genetic algorithm parameters were analyzed. The method proved to be efficient, allowing the detection of significant interactions between the algorithm parameters and the weights for the objective functions and also the analysis of the parameters effect on the problem solution. The procedure also proved to be efficient for the definition of the optimal weights and parameters for the optimization of the welding process.


Genetic algorithm tuning Mixture design of experiments Multi-objective optimization Global criterion method 


  1. 1.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004). Scholar
  2. 2.
    Rao, S.S.: Engineering Optimization: Theory and Practice, 4th edn. Wiley, New Jersey (2009)Google Scholar
  3. 3.
    Heredia-Langner, A., Montgomery, D.C., Carlyle, W.M.: Solving a multistage partial inspection problem using genetic algorithms. Int. J. Product. Res. 40(8), 1923–1940 (2002).
  4. 4.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. Ph.D. thesis, University of Michigan Press (1975).
  5. 5.
    Zain, A.M., Haron, H., Sharif, S.: Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Syst. Appl. 37(6), 4650–4659 (2010). Scholar
  6. 6.
    Fleming, P., Purshouse, R.: Evolutionary algorithms in control systems engineering: a survey. Control Eng. Pract. 10(11), 1223–1241 (2002).
  7. 7.
    Maaranen, H., Miettinen, K., Penttinen, A.: On initial populations of a genetic algorithm for continuous optimization problems 37 (2007).
  8. 8.
    Candan, G., Yazgan, H.R.: Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem. Int. J. Product. Res. 53(3), 897–915 (2014).
  9. 9.
    Weise, T., Wu, Y., Chiong, R., Tang, K., Lässig, J.: Global versus local search: the impact of population sizes on evolutionary algorithm performance. J. Global Optim. 1–24 (2016).
  10. 10.
    Ortiz, F., Simpson, J.R., Pignatiello, J.J., Heredia-langner, A.: A genetic algorithm approach to multiple-response optimization. J. Qual. Technol. 36(4), 432–450 (2004)Google Scholar
  11. 11.
    Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16(February), 122–128 (1986)Google Scholar
  12. 12.
    Eiben, A.E., Smit, S.K.: Evolutionary algorithm parameters and methods to tune them. In: Autonomus Search, Chap. 2, pp. 15–36. Springer, Heidelberg (2012).
  13. 13.
    Alajmi, A., Wright, J.: Selecting the most efficient genetic algorithm sets in solving unconstrained building optimization problem. Int. J. Sustain. Built Environ. 3(1), 18–26 (2014). Scholar
  14. 14.
    Fernandez-Prieto, J.a., Canada-Bago, J., Gadeo-Martos, M.a., Velasco, J.R.: Optimisation of control parameters for genetic algorithms to test computer networks under realistic traffic loads. Appl. Soft Comput. J. 12(4), 1875–1883 (2012).
  15. 15.
    Núñez-Letamendia, L.: Fitting the control parameters of a genetic algorithm: an application to technical trading systems design. Eur. J. Oper. Res. 179, 847–868 (2007). Scholar
  16. 16.
    Costa, C.B.B., Rivera, E.A.C., Rezende, M.C.A.F., Maciel, M.R.W., Filho, R.M.: Prior detection of genetic algorithm significant parameters: coupling factorial design technique to genetic algorithm. Chem. Eng. Sci. 62, 4780–4801 (2007). Scholar
  17. 17.
    Myers, R., Montgomery, D., Anderson-Cook, C.: Response Surface Methodology, 3 edn. (2009)Google Scholar
  18. 18.
    Cornell, J.A.: A Primer on Experiments with Mixtures, 3rd edn. Wiley, New Jersey (2011)Google Scholar
  19. 19.
    Gomes, J.H.F., Paiva, A.P., Costa, S.C., Balestrassi, P.P., Paiva, E.J.: Weighted multivariate mean square error for processes optimization: a case study on flux-cored arc welding for stainless steel claddings. Eur. J. Oper. Res. 226(3), 522–535 (2013). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Industrial Engineering, Federal University of ItajubáItajubáBrazil
  2. 2.Mechanical Engineering InstituteFederal University of ItajubáItajubáBrazil

Personalised recommendations