Advertisement

Solving Mathematical Programs with Complementarity Constraints with a Penalization Approach

  • Lina AbdallahEmail author
  • Tangi Migot
  • Mounir Haddou
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

In this paper, we consider mathematical problems with complementarity constraints. To solve it, we propose a penalization approach based on concave and nondecreasing functions. We give the link between the penalized problem and our original problem. This approach was already used in [3]. The main difference is that, we do not use any constraint qualification assumption. Some numerical results are presented to show the validity of this approach.

Keywords

Constrained optimization Nonlinear programming Mpcc Penalty function 

References

  1. 1.
    Abdallah, L., Haddou, M., Migot, T.: A sub-additive dc approach to the complementarity problem. Comput. Optim. Appl. 1–26 (2019)Google Scholar
  2. 2.
    Abdallah, L., Haddou, M., Migot, T.: Solving absolute value equation using complementarity and smoothing functions. J. Comput. Appl. Math. 327, 196–207 (2018)Google Scholar
  3. 3.
    Abdallah, L., Haddou, M.: An exact penalty approach for mathematical programs with equilibrium constraints. J. Adv. Math. 9, 2946–2955 (2014)Google Scholar
  4. 4.
  5. 5.
    Dussault, J.P., Haddou, M., Kadrani, A., Migot, T.: How to Compute a M-Stationary Point of the MPCC. Optimization online.org (2017)Google Scholar
  6. 6.
    Dussault, J.P., Haddou, M., Migot, T.: The New Butterfly Relaxation Method for Mathematical Programs with Complementarity Constraints. Optimization online.org (2016)Google Scholar
  7. 7.
    Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I and II. Springer, New York (2003)Google Scholar
  8. 8.
    Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17(1), 259–286 (2006)Google Scholar
  9. 9.
    Haddou, M.: A new class of smoothing methods for mathematical programs with equilibrium constraints. Pac. J. Optim. 5, 87–95 (2009)Google Scholar
  10. 10.
    Hu, X.M., Ralph, D.: Convergence of a penalty method for mathematical programming with complementarity constraints. J. Optim. Theory Appl. 123, 365–390 (2004)Google Scholar
  11. 11.
    Huyer, W., Neumaier, A.: A new exact penalty function. SIAM J. Optim. 13(4), 1141–1158 (2003)Google Scholar
  12. 12.
    Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Program. 85, 81–106 (1995)Google Scholar
  13. 13.
    Gill, P., Murray, W., Saunders, M.: SNOPT, a large-scale smooth optimization problems having linear or nonlinear objectives and constraints. http://www-neos.mcs.anl.gov/neos/solvers
  14. 14.
    Guo, L., Lin, G.H., Ye, J.J.: Solving mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 166, 234–256 (2015)Google Scholar
  15. 15.
    Leyfer, S., Munson, T.S.: A globally convergent filter method for MPECs, April 2009. ANL/MCS-P1457-0907Google Scholar
  16. 16.
    Leyfer, S., Lepez-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17(1), 52–77 (2006)Google Scholar
  17. 17.
    Lin, G.H., Fukushima, M.: Some exact penalty results for nonlinear programs and mathematical programs with equilibrum constraints. J. Optim. Theory Appl. 118, 67–80 (2003)Google Scholar
  18. 18.
    Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, UK (1996)Google Scholar
  19. 19.
    Liu, G., Ye, J., Zhu, J.: Partial exact penalty for mathematical programs with equilibrum constraints. J. Set-Valued Anal. 16, 785–804 (2008)Google Scholar
  20. 20.
    Liu, X., Sun, J.: Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints. Math. Program. 101(1), 231–261 (2004)Google Scholar
  21. 21.
    Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)Google Scholar
  22. 22.
    Mangasarian, O.L., Pang, J.S.: Exact penalty functions for mathematical programs with linear complementary constraints. J. Glob. Optim. 5 (1994)Google Scholar
  23. 23.
    Marechal, M., Correa, R.: A DC (Difference of Convex functions) Approach of the MPECs. Optimization online.org (2014)Google Scholar
  24. 24.
    Monteiro, M.T.T., Meira, J.F.P.: A penalty method and a regularization strategy to solve MPCC. Int. J. Comput. Math. 88(1), 145–149 (2011)Google Scholar
  25. 25.
    Raghunathan, A.U., Biegler, L.T.: An interior point method for mathematical programs with complementarity constraints (MPCCs). SIAM J. Optim. 15(3), 720–750 (2005)Google Scholar
  26. 26.
    Ralph, D., Wright, S.J.: Some Properties of Regularization and Penalization Schemee for MPECS. Springer, New York (2000)Google Scholar
  27. 27.
    Ye, J.J., Zhu, D.L., Zhu, Q.J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7, 481–507 (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Lebanese UniversityTripoliLebanon
  2. 2.University of GuelphGuelphCanada
  3. 3.INSA-IRMAR, UMR-CNRS 6625RennesFrance

Personalised recommendations