Advertisement

Pharmacology of Medical Cannabis

  • Md Ruhul Amin
  • Declan W. AliEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1162)

Abstract

The Cannabis plant has been used for many of years as a medicinal agent in the relief of pain and seizures. It contains approximately 540 natural compounds including more than 100 that have been identified as phytocannabinoids due to their shared chemical structure. The predominant psychotropic component is Δ9-tetrahydrocannabinol (Δ9-THC), while the major non-psychoactive ingredient is cannabidiol (CBD). These compounds have been shown to be partial agonists or antagonists at the prototypical cannabinoid receptors, CB1 and CB2. The therapeutic actions of Δ9-THC and CBD include an ability to act as analgesics, anti-emetics, anti-inflammatory agents, anti-seizure compounds and as protective agents in neurodegeneration. However, there is a lack of well-controlled, double blind, randomized clinical trials to provide clarity on the efficacy of either Δ9-THC or CBD as therapeutics. Moreover, the safety concerns regarding the unwanted side effects of Δ9-THC as a psychoactive agent preclude its widespread use in the clinic. The legalization of cannabis for medicinal purposes and for recreational use in some regions will allow for much needed research on the pharmacokinetics and pharmocology of medical cannabis. This brief review focuses on the use of cannabis as a medicinal agent in the treatment of pain, epilepsy and neurodegenerative diseases. Despite the paucity of information, attention is paid to the mechanisms by which medical cannabis may act to relieve pain and seizures.

Keywords

Cannabinoids CBD THC Medicinal 

Abbreviations

Δ9-THC

tetrahydrocannabinol

2-AG

2-arachiodonoylglycerol

AEA

anandamide

AD

Alzheimer’s disease

cAMP

cyclic adenosine monophosphate

CB1

cannabinoid receptor 1

CB2

cannabinoid receptor 2

CB3

cannabinoid receptor 3

CBD

cannabidiol

CBN

cannabinol

CNS

central nervous system

CHO

Chinese hamster ovary

DRG

dorsal root ganglion

EAE

experimental autoimmune encephalomyelitis

GABA

gamma-aminobutyric acid, or γ-aminobutyric acid

GPCR55

G protein-coupled receptor 55

IP3

Inositol trisphosphate

KA

kainic acid

LPI

L-α-lysophosphatidylinositol

MS

multiple sclerosis

SCBs

synthetic cannabinoids

TRPA1

transient receptor potential cation channel, subfamily A, member 1

TRPV1

transient receptor potential cation channel, subfamily V, member 1

TRPV2

transient receptor potential cation channel, subfamily V, member 2

Notes

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant to DWA.

References

  1. 1.
    Friedman D, Sirven JI (2017) Historical perspective on the medical use of cannabis for epilepsy: ancient times to the 1980s. Epilepsy Behav 70(Pt B):298–301PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Russo EB (2017) Cannabis and epilepsy: an ancient treatment returns to the fore. Epilepsy Behav 70(Pt B):292–297PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Aggarwal SK, Carter GT, Sullivan MD, ZumBrunnen C, Morrill R, Mayer JD (2009) Medicinal use of cannabis in the United States: historical perspectives, current trends, and future directions. J Opioid Manag 5(3):153–168PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Epstein HA (2010) A natural approach to soothing atopic skin. Skinmed 8(2):95–97PubMedPubMedCentralGoogle Scholar
  5. 5.
    Stevens CJ, Murphy C, Roberts R, Lucas L, Silva F, Fuller DQ (2016) Between China and South Asia: a middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. The Holocene 26(10):1541–1555PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Jiang HE, Li X, Zhao YX, Ferguson DK, Hueber F, Bera S et al (2006) A new insight into Cannabis sativa (Cannabaceae) utilization from 2500-year-old Yanghai Tombs, Xinjiang, China. J Ethnopharmacol 108(3):414–422PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M et al (2018) Cannabis sativa: a comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol 227:300–315PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hanus LO, Meyer SM, Munoz E, Taglialatela-Scafati O, Appendino G (2016) Phytocannabinoids: a unified critical inventory. Nat Prod Rep 33(12):1357–1392PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hill AJ, Williams CM, Whalley BJ, Stephens GJ (2012) Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 133(1):79–97PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564PubMedCrossRefGoogle Scholar
  11. 11.
    Gerard C, Mollereau C, Vassart G, Parmentier M (1990) Nucleotide sequence of a human cannabinoid receptor cDNA. Nucleic Acids Res 18(23):7142PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65PubMedCrossRefGoogle Scholar
  13. 13.
    Gerard CM, Mollereau C, Vassart G, Parmentier M (1991) Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 279. (Pt 1:129–134PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA et al (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54(2):161–202PubMedCrossRefGoogle Scholar
  15. 15.
    Jordan CJ, Xi ZX (2019) Progress in brain cannabinoid CB2 receptor research: from genes to behavior. Neurosci Biobehav Rev 98:208–220PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR et al (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87(5):1932–1936PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153(2):199–215PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Howlett AC, Mukhopadhyay S (2000) Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem Phys Lipids 108(1–2):53–70PubMedCrossRefGoogle Scholar
  19. 19.
    Childers SR, Sexton T, Roy MB (1994) Effects of anandamide on cannabinoid receptors in rat brain membranes. Biochem Pharmacol 47(4):711–715PubMedCrossRefGoogle Scholar
  20. 20.
    Gonsiorek W, Lunn C, Fan X, Narula S, Lundell D, Hipkin RW (2000) Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol Pharmacol 57(5):1045–1050PubMedPubMedCentralGoogle Scholar
  21. 21.
    Rhee MH, Vogel Z, Barg J, Bayewitch M, Levy R, Hanus L et al (1997) Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase. J Med Chem 40(20):3228–3233PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Rhee MH, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z (1998) Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem 71(4):1525–1534PubMedCrossRefGoogle Scholar
  23. 23.
    Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y et al (2016) Crystal structure of the human cannabinoid receptor CB1. Cell 167(3):750–62 e14PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105(7):2699–2704PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 110(13):5193–5198PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457PubMedCrossRefGoogle Scholar
  28. 28.
    Zheng J (2013) Molecular mechanism of TRP channels. Compr Physiol 3(1):221–242PubMedPubMedCentralGoogle Scholar
  29. 29.
    Akopian AN, Ruparel NB, Patwardhan A, Hargreaves KM (2008) Cannabinoids desensitize capsaicin and mustard oil responses in sensory neurons via TRPA1 activation. J Neurosci 28(5):1064–1075PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kim D, Cavanaugh EJ, Simkin D (2008) Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4,5-bisphosphate. Am J Physiol Cell Physiol 295(1):C92–C99PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28(24):6231–6238PubMedCrossRefGoogle Scholar
  32. 32.
    Cristino L, de Petrocellis L, Pryce G, Baker D, Guglielmotti V, Di Marzo V (2006) Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139(4):1405–1415PubMedCrossRefGoogle Scholar
  33. 33.
    Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I (2000) Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100(4):685–688PubMedCrossRefGoogle Scholar
  34. 34.
    Caterina MJ, Julius D (1999) Sense and specificity: a molecular identity for nociceptors. Curr Opin Neurobiol 9(5):525–530PubMedCrossRefGoogle Scholar
  35. 35.
    Kowase T, Nakazato Y, Yoko OH, Morikawa A, Kojima I (2002) Immunohistochemical localization of growth factor-regulated channel (GRC) in human tissues. Endocr J 49(3):349–355PubMedCrossRefGoogle Scholar
  36. 36.
    Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829PubMedCrossRefGoogle Scholar
  37. 37.
    Diogenes A, Akopian AN, Hargreaves KM (2007) NGF up-regulates TRPA1: implications for orofacial pain. J Dent Res 86(6):550–555PubMedCrossRefGoogle Scholar
  38. 38.
    Diogenes MJ, Assaife-Lopes N, Pinto-Duarte A, Ribeiro JA, Sebastiao AM (2007) Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus 17(7):577–585PubMedCrossRefGoogle Scholar
  39. 39.
    Nahas GG, Frick HC, Lattimer JK, Latour C, Harvey D (2002) Pharmacokinetics of THC in brain and testis, male gametotoxicity and premature apoptosis of spermatozoa. Hum Psychopharmacol 17(2):103–113PubMedCrossRefGoogle Scholar
  40. 40.
    Perez-Reyes M (1990) Marijuana smoking: factors that influence the bioavailability of tetrahydrocannabinol. NIDA Res Monogr 99:42–62PubMedPubMedCentralGoogle Scholar
  41. 41.
    Huestis MA (2007) Human cannabinoid pharmacokinetics. Chem Biodivers 4(8):1770–1804PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    McGilveray IJ (2005) Pharmacokinetics of cannabinoids. Pain Res Manag 10(Suppl A):15A–22APubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Huestis MA, Mitchell JM, Cone EJ (1996) Urinary excretion profiles of 11-nor-9-carboxy-delta 9-tetrahydrocannabinol in humans after single smoked doses of marijuana. J Anal Toxicol 20(6):441–452PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Huestis MA, Henningfield JE, Cone EJ (1992) Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J Anal Toxicol 16(5):276–282PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Huestis MA, Sampson AH, Holicky BJ, Henningfield JE, Cone EJ (1992) Characterization of the absorption phase of marijuana smoking. Clin Pharmacol Ther 52(1):31–41PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Perez-Reyes M, Timmons MC, Lipton MA, Davis KH, Wall ME (1972) Intravenous injection in man of 9 -tetrahydrocannabinol and 11-OH- 9 -tetrahydrocannabinol. Science 177(4049):633–635PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Alles SRA, Smith PA (2018) Etiology and pharmacology of neuropathic pain. Pharmacol Rev 70(2):315–347PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S et al (2007) Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 68(7):515–521PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Ellis RJ, Toperoff W, Vaida F, van den Brande G, Gonzales J, Gouaux B et al (2009) Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology 34(3):672–680PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Wilsey B, Marcotte T, Tsodikov A, Millman J, Bentley H, Gouaux B et al (2008) A randomized, placebo-controlled, crossover trial of cannabis cigarettes in neuropathic pain. J Pain 9(6):506–521PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Borgelt LM, Franson KL, Nussbaum AM, Wang GS (2013) The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 33(2):195–209PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Rog DJ, Nurmikko TJ, Young CA (2007) Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther 29(9):2068–2079PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nurmikko TJ, Serpell MG, Hoggart B, Toomey PJ, Morlion BJ, Haines D (2007) Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial. Pain 133(1–3):210–220PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Hauser W, Fitzcharles MA, Radbruch L, Petzke F (2017) Cannabinoids in pain management and palliative medicine. Deutsches Arzteblatt Int 114(38):627–634Google Scholar
  55. 55.
    Fitzcharles MA, Baerwald C, Ablin J, Hauser W (2016) Efficacy, tolerability and safety of cannabinoids in chronic pain associated with rheumatic diseases (fibromyalgia syndrome, back pain, osteoarthritis, rheumatoid arthritis): a systematic review of randomized controlled trials. Schmerz 30(1):47–61PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Fitzcharles MA, Ste-Marie PA, Hauser W, Clauw DJ, Jamal S, Karsh J et al (2016) Efficacy, tolerability, and safety of cannabinoid treatments in the rheumatic diseases: a systematic review of randomized controlled trials. Arthritis Care Res (Hoboken) 68(5):681–688CrossRefGoogle Scholar
  57. 57.
    Volz MS, Siegmund B, Hauser W (2016) Efficacy, tolerability, and safety of cannabinoids in gastroenterology: a systematic review. Schmerz 30(1):37–46PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    de Vries M, van Rijckevorsel DCM, Vissers KCP, Wilder-Smith OHG, van Goor H (2017) Tetrahydrocannabinol does not reduce pain in patients with chronic abdominal pain in a phase 2 placebo-controlled study. Clin Gastroenterol Hepatol 15(7):1079–1086. e4PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Brents LK, Zimmerman SM, Saffell AR, Prather PL, Fantegrossi WE (2013) Differential drug-drug interactions of the synthetic cannabinoids JWH-018 and JWH-073: implications for drug abuse liability and pain therapy. J Pharmacol Exp Ther 346(3):350–361PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30(10):515–527PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ et al (2007) Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 10(7):870–879PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Patwardhan AM, Jeske NA, Price TJ, Gamper N, Akopian AN, Hargreaves KM (2006) The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc Natl Acad Sci U S A 103(30):11393–11398PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Philpott HT, O’Brien M, McDougall JJ (2017) Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain 158(12):2442–2451PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Barrese V, Miceli F, Soldovieri MV, Ambrosino P, Iannotti FA, Cilio MR et al (2010) Neuronal potassium channel openers in the management of epilepsy: role and potential of retigabine. Clin Pharmacol 2:225–236PubMedPubMedCentralGoogle Scholar
  65. 65.
    Korczyn AD, Schachter SC, Amlerova J, Bialer M, van Emde Boas W, Brazdil M et al (2015) Third international congress on epilepsy, brain and mind: Part 1. Epilepsy Behav 50:116–137PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rektor I, Schachter SC, Arya R, Arzy S, Braakman H, Brodie MJ et al (2015) Third international congress on epilepsy, brain, and mind: part 2. Epilepsy Behav 50:138–159PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Hesdorffer DC, Beck V, Begley CE, Bishop ML, Cushner-Weinstein S, Holmes GL et al (2013) Research implications of the institute of medicine report, epilepsy across the Spectrum: promoting health and understanding. Epilepsia 54(2):207–216PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tang F, Hartz AMS, Bauer B (2017) Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol 8:301PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hill AJ, Mercier MS, Hill TD, Glyn SE, Jones NA, Yamasaki Y et al (2012) Cannabidivarin is anticonvulsant in mouse and rat. Br J Pharmacol 167(8):1629–1642PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hill TD, Cascio MG, Romano B, Duncan M, Pertwee RG, Williams CM et al (2013) Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br J Pharmacol 170(3):679–692PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Jones NA, Glyn SE, Akiyama S, Hill TD, Hill AJ, Weston SE et al (2012) Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 21(5):344–352PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Wallace MJ, Wiley JL, Martin BR, DeLorenzo RJ (2001) Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol 428(1):51–57PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wallace MJ, Martin BR, DeLorenzo RJ (2002) Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 452(3):295–301PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Luszczki JJ, Andres-Mach M, Barcicka-Klosowska B, Florek-Luszczki M, Haratym-Maj A, Czuczwar SJ (2011) Effects of WIN 55,212-2 mesylate (a synthetic cannabinoid) on the protective action of clonazepam, ethosuximide, phenobarbital and valproate against pentylenetetrazole-induced clonic seizures in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 35(8):1870–1876CrossRefGoogle Scholar
  75. 75.
    Luszczki JJ, Misiuta-Krzesinska M, Florek M, Tutka P, Czuczwar SJ (2011) Synthetic cannabinoid WIN 55,212-2 mesylate enhances the protective action of four classical antiepileptic drugs against maximal electroshock-induced seizures in mice. Pharmacol Biochem Behav 98(2):261–267PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Mechoulam R (1970) Marihuana chemistry. Science 168(3936):1159–1166PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cunha JM, Carlini EA, Pereira AE, Ramos OL, Pimentel C, Gagliardi R et al (1980) Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21(3):175–185PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hausman-Kedem M, Menascu S, Kramer U (2018) Efficacy of CBD-enriched medical cannabis for treatment of refractory epilepsy in children and adolescents – an observational, longitudinal study. Brain Dev 40(7):544–551PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Alger BE (2002) Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol 68(4):247–286PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Marsicano G, Lutz B (2006) Neuromodulatory functions of the endocannabinoid system. J Endocrinol Investig 29(3 Suppl):27–46Google Scholar
  82. 82.
    Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A et al (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302(5642):84–88PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Gerdeman GL, Lovinger DM (2003) Emerging roles for endocannabinoids in long-term synaptic plasticity. Br J Pharmacol 140(5):781–789PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ (2003) The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 307(1):129–137PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R et al (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51(4):455–466PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Guggenhuber S, Monory K, Lutz B, Klugmann M (2010) AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS One 5(12):e15707PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mackie K, Hille B (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci U S A 89(9):3825–3829PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hampson RE, Evans GJ, Mu J, Zhuang SY, King VC, Childers SR et al (1995) Role of cyclic AMP dependent protein kinase in cannabinoid receptor modulation of potassium “A-current” in cultured rat hippocampal neurons. Life Sci 56(23–24):2081–2088PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Mackie K, Lai Y, Westenbroek R, Mitchell R (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15(10):6552–6561PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Lakhan SE, Rowland M (2009) Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review. BMC Neurol 9:59PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Iskedjian M, Bereza B, Gordon A, Piwko C, Einarson TR (2007) Meta-analysis of cannabis based treatments for neuropathic and multiple sclerosis-related pain. Curr Med Res Opin 23(1):17–24PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Centonze D, Bari M, Rossi S, Prosperetti C, Furlan R, Fezza F et al (2007) The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain 130(Pt 10):2543–2553PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Centonze D, Rossi S, Finazzi-Agro A, Bernardi G, Maccarrone M (2007) The (endo)cannabinoid system in multiple sclerosis and amyotrophic lateral sclerosis. Int Rev Neurobiol 82:171–186PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Jean-Gilles L, Feng S, Tench CR, Chapman V, Kendall DA, Barrett DA et al (2009) Plasma endocannabinoid levels in multiple sclerosis. J Neurol Sci 287(1–2):212–215PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Pryce G, Ahmed Z, Hankey DJ, Jackson SJ, Croxford JL, Pocock JM et al (2003) Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 126(Pt 10):2191–2202PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wade DT, Makela P, Robson P, House H, Bateman C (2004) Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 10(4):434–441PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Wade DT, Collin C, Stott C, Duncombe P (2010) Meta-analysis of the efficacy and safety of Sativex (nabiximols), on spasticity in people with multiple sclerosis. Mult Scler 16(6):707–714PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63(3):637–652PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25(8):1904–1913PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ et al (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23(35):11136–11141PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Pazos MR, Nunez E, Benito C, Tolon RM, Romero J (2004) Role of the endocannabinoid system in Alzheimer’s disease: new perspectives. Life Sci 75(16):1907–1915PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Eubanks LM, Rogers CJ, AEt B, Koob GF, Olson AJ, Dickerson TJ et al (2006) A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol Pharm 3(6):773–777PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Milton NG (2002) Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci Lett 332(2):127–130PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Physiology, The Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonCanada
  3. 3.The Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonCanada

Personalised recommendations