Pharmacology of Medical Cannabis
- 17 Citations
- 5 Mentions
- 2.7k Downloads
Abstract
The Cannabis plant has been used for many of years as a medicinal agent in the relief of pain and seizures. It contains approximately 540 natural compounds including more than 100 that have been identified as phytocannabinoids due to their shared chemical structure. The predominant psychotropic component is Δ9-tetrahydrocannabinol (Δ9-THC), while the major non-psychoactive ingredient is cannabidiol (CBD). These compounds have been shown to be partial agonists or antagonists at the prototypical cannabinoid receptors, CB1 and CB2. The therapeutic actions of Δ9-THC and CBD include an ability to act as analgesics, anti-emetics, anti-inflammatory agents, anti-seizure compounds and as protective agents in neurodegeneration. However, there is a lack of well-controlled, double blind, randomized clinical trials to provide clarity on the efficacy of either Δ9-THC or CBD as therapeutics. Moreover, the safety concerns regarding the unwanted side effects of Δ9-THC as a psychoactive agent preclude its widespread use in the clinic. The legalization of cannabis for medicinal purposes and for recreational use in some regions will allow for much needed research on the pharmacokinetics and pharmocology of medical cannabis. This brief review focuses on the use of cannabis as a medicinal agent in the treatment of pain, epilepsy and neurodegenerative diseases. Despite the paucity of information, attention is paid to the mechanisms by which medical cannabis may act to relieve pain and seizures.
Keywords
Cannabinoids CBD THC MedicinalAbbreviations
- Δ9-THC
tetrahydrocannabinol
- 2-AG
2-arachiodonoylglycerol
- AEA
anandamide
- AD
Alzheimer’s disease
- cAMP
cyclic adenosine monophosphate
- CB1
cannabinoid receptor 1
- CB2
cannabinoid receptor 2
- CB3
cannabinoid receptor 3
- CBD
cannabidiol
- CBN
cannabinol
- CNS
central nervous system
- CHO
Chinese hamster ovary
- DRG
dorsal root ganglion
- EAE
experimental autoimmune encephalomyelitis
- GABA
gamma-aminobutyric acid, or γ-aminobutyric acid
- GPCR55
G protein-coupled receptor 55
- IP3
Inositol trisphosphate
- KA
kainic acid
- LPI
L-α-lysophosphatidylinositol
- MS
multiple sclerosis
- SCBs
synthetic cannabinoids
- TRPA1
transient receptor potential cation channel, subfamily A, member 1
- TRPV1
transient receptor potential cation channel, subfamily V, member 1
- TRPV2
transient receptor potential cation channel, subfamily V, member 2
Notes
Acknowledgements
This research was supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant to DWA.
References
- 1.Friedman D, Sirven JI (2017) Historical perspective on the medical use of cannabis for epilepsy: ancient times to the 1980s. Epilepsy Behav 70(Pt B):298–301PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Russo EB (2017) Cannabis and epilepsy: an ancient treatment returns to the fore. Epilepsy Behav 70(Pt B):292–297PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Aggarwal SK, Carter GT, Sullivan MD, ZumBrunnen C, Morrill R, Mayer JD (2009) Medicinal use of cannabis in the United States: historical perspectives, current trends, and future directions. J Opioid Manag 5(3):153–168PubMedCrossRefPubMedCentralGoogle Scholar
- 4.Epstein HA (2010) A natural approach to soothing atopic skin. Skinmed 8(2):95–97PubMedPubMedCentralGoogle Scholar
- 5.Stevens CJ, Murphy C, Roberts R, Lucas L, Silva F, Fuller DQ (2016) Between China and South Asia: a middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. The Holocene 26(10):1541–1555PubMedPubMedCentralCrossRefGoogle Scholar
- 6.Jiang HE, Li X, Zhao YX, Ferguson DK, Hueber F, Bera S et al (2006) A new insight into Cannabis sativa (Cannabaceae) utilization from 2500-year-old Yanghai Tombs, Xinjiang, China. J Ethnopharmacol 108(3):414–422PubMedCrossRefPubMedCentralGoogle Scholar
- 7.Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M et al (2018) Cannabis sativa: a comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol 227:300–315PubMedCrossRefPubMedCentralGoogle Scholar
- 8.Hanus LO, Meyer SM, Munoz E, Taglialatela-Scafati O, Appendino G (2016) Phytocannabinoids: a unified critical inventory. Nat Prod Rep 33(12):1357–1392PubMedCrossRefPubMedCentralGoogle Scholar
- 9.Hill AJ, Williams CM, Whalley BJ, Stephens GJ (2012) Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 133(1):79–97PubMedCrossRefPubMedCentralGoogle Scholar
- 10.Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564PubMedCrossRefGoogle Scholar
- 11.Gerard C, Mollereau C, Vassart G, Parmentier M (1990) Nucleotide sequence of a human cannabinoid receptor cDNA. Nucleic Acids Res 18(23):7142PubMedPubMedCentralCrossRefGoogle Scholar
- 12.Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65PubMedCrossRefGoogle Scholar
- 13.Gerard CM, Mollereau C, Vassart G, Parmentier M (1991) Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 279. (Pt 1:129–134PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA et al (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54(2):161–202PubMedCrossRefGoogle Scholar
- 15.Jordan CJ, Xi ZX (2019) Progress in brain cannabinoid CB2 receptor research: from genes to behavior. Neurosci Biobehav Rev 98:208–220PubMedCrossRefPubMedCentralGoogle Scholar
- 16.Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR et al (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87(5):1932–1936PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153(2):199–215PubMedCrossRefPubMedCentralGoogle Scholar
- 18.Howlett AC, Mukhopadhyay S (2000) Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem Phys Lipids 108(1–2):53–70PubMedCrossRefGoogle Scholar
- 19.Childers SR, Sexton T, Roy MB (1994) Effects of anandamide on cannabinoid receptors in rat brain membranes. Biochem Pharmacol 47(4):711–715PubMedCrossRefGoogle Scholar
- 20.Gonsiorek W, Lunn C, Fan X, Narula S, Lundell D, Hipkin RW (2000) Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol Pharmacol 57(5):1045–1050PubMedPubMedCentralGoogle Scholar
- 21.Rhee MH, Vogel Z, Barg J, Bayewitch M, Levy R, Hanus L et al (1997) Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase. J Med Chem 40(20):3228–3233PubMedCrossRefPubMedCentralGoogle Scholar
- 22.Rhee MH, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z (1998) Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem 71(4):1525–1534PubMedCrossRefGoogle Scholar
- 23.Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y et al (2016) Crystal structure of the human cannabinoid receptor CB1. Cell 167(3):750–62 e14PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105(7):2699–2704PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 110(13):5193–5198PubMedPubMedCentralCrossRefGoogle Scholar
- 27.Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457PubMedCrossRefGoogle Scholar
- 28.Zheng J (2013) Molecular mechanism of TRP channels. Compr Physiol 3(1):221–242PubMedPubMedCentralGoogle Scholar
- 29.Akopian AN, Ruparel NB, Patwardhan A, Hargreaves KM (2008) Cannabinoids desensitize capsaicin and mustard oil responses in sensory neurons via TRPA1 activation. J Neurosci 28(5):1064–1075PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Kim D, Cavanaugh EJ, Simkin D (2008) Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4,5-bisphosphate. Am J Physiol Cell Physiol 295(1):C92–C99PubMedPubMedCentralCrossRefGoogle Scholar
- 31.Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28(24):6231–6238PubMedCrossRefGoogle Scholar
- 32.Cristino L, de Petrocellis L, Pryce G, Baker D, Guglielmotti V, Di Marzo V (2006) Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139(4):1405–1415PubMedCrossRefGoogle Scholar
- 33.Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I (2000) Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100(4):685–688PubMedCrossRefGoogle Scholar
- 34.Caterina MJ, Julius D (1999) Sense and specificity: a molecular identity for nociceptors. Curr Opin Neurobiol 9(5):525–530PubMedCrossRefGoogle Scholar
- 35.Kowase T, Nakazato Y, Yoko OH, Morikawa A, Kojima I (2002) Immunohistochemical localization of growth factor-regulated channel (GRC) in human tissues. Endocr J 49(3):349–355PubMedCrossRefGoogle Scholar
- 36.Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829PubMedCrossRefGoogle Scholar
- 37.Diogenes A, Akopian AN, Hargreaves KM (2007) NGF up-regulates TRPA1: implications for orofacial pain. J Dent Res 86(6):550–555PubMedCrossRefGoogle Scholar
- 38.Diogenes MJ, Assaife-Lopes N, Pinto-Duarte A, Ribeiro JA, Sebastiao AM (2007) Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus 17(7):577–585PubMedCrossRefGoogle Scholar
- 39.Nahas GG, Frick HC, Lattimer JK, Latour C, Harvey D (2002) Pharmacokinetics of THC in brain and testis, male gametotoxicity and premature apoptosis of spermatozoa. Hum Psychopharmacol 17(2):103–113PubMedCrossRefGoogle Scholar
- 40.Perez-Reyes M (1990) Marijuana smoking: factors that influence the bioavailability of tetrahydrocannabinol. NIDA Res Monogr 99:42–62PubMedPubMedCentralGoogle Scholar
- 41.Huestis MA (2007) Human cannabinoid pharmacokinetics. Chem Biodivers 4(8):1770–1804PubMedPubMedCentralCrossRefGoogle Scholar
- 42.McGilveray IJ (2005) Pharmacokinetics of cannabinoids. Pain Res Manag 10(Suppl A):15A–22APubMedCrossRefPubMedCentralGoogle Scholar
- 43.Huestis MA, Mitchell JM, Cone EJ (1996) Urinary excretion profiles of 11-nor-9-carboxy-delta 9-tetrahydrocannabinol in humans after single smoked doses of marijuana. J Anal Toxicol 20(6):441–452PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Huestis MA, Henningfield JE, Cone EJ (1992) Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J Anal Toxicol 16(5):276–282PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Huestis MA, Sampson AH, Holicky BJ, Henningfield JE, Cone EJ (1992) Characterization of the absorption phase of marijuana smoking. Clin Pharmacol Ther 52(1):31–41PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Perez-Reyes M, Timmons MC, Lipton MA, Davis KH, Wall ME (1972) Intravenous injection in man of 9 -tetrahydrocannabinol and 11-OH- 9 -tetrahydrocannabinol. Science 177(4049):633–635PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Alles SRA, Smith PA (2018) Etiology and pharmacology of neuropathic pain. Pharmacol Rev 70(2):315–347PubMedCrossRefPubMedCentralGoogle Scholar
- 48.Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S et al (2007) Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 68(7):515–521PubMedCrossRefPubMedCentralGoogle Scholar
- 49.Ellis RJ, Toperoff W, Vaida F, van den Brande G, Gonzales J, Gouaux B et al (2009) Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology 34(3):672–680PubMedCrossRefPubMedCentralGoogle Scholar
- 50.Wilsey B, Marcotte T, Tsodikov A, Millman J, Bentley H, Gouaux B et al (2008) A randomized, placebo-controlled, crossover trial of cannabis cigarettes in neuropathic pain. J Pain 9(6):506–521PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Borgelt LM, Franson KL, Nussbaum AM, Wang GS (2013) The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 33(2):195–209PubMedCrossRefPubMedCentralGoogle Scholar
- 52.Rog DJ, Nurmikko TJ, Young CA (2007) Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther 29(9):2068–2079PubMedCrossRefPubMedCentralGoogle Scholar
- 53.Nurmikko TJ, Serpell MG, Hoggart B, Toomey PJ, Morlion BJ, Haines D (2007) Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial. Pain 133(1–3):210–220PubMedCrossRefPubMedCentralGoogle Scholar
- 54.Hauser W, Fitzcharles MA, Radbruch L, Petzke F (2017) Cannabinoids in pain management and palliative medicine. Deutsches Arzteblatt Int 114(38):627–634Google Scholar
- 55.Fitzcharles MA, Baerwald C, Ablin J, Hauser W (2016) Efficacy, tolerability and safety of cannabinoids in chronic pain associated with rheumatic diseases (fibromyalgia syndrome, back pain, osteoarthritis, rheumatoid arthritis): a systematic review of randomized controlled trials. Schmerz 30(1):47–61PubMedCrossRefPubMedCentralGoogle Scholar
- 56.Fitzcharles MA, Ste-Marie PA, Hauser W, Clauw DJ, Jamal S, Karsh J et al (2016) Efficacy, tolerability, and safety of cannabinoid treatments in the rheumatic diseases: a systematic review of randomized controlled trials. Arthritis Care Res (Hoboken) 68(5):681–688CrossRefGoogle Scholar
- 57.Volz MS, Siegmund B, Hauser W (2016) Efficacy, tolerability, and safety of cannabinoids in gastroenterology: a systematic review. Schmerz 30(1):37–46PubMedCrossRefPubMedCentralGoogle Scholar
- 58.de Vries M, van Rijckevorsel DCM, Vissers KCP, Wilder-Smith OHG, van Goor H (2017) Tetrahydrocannabinol does not reduce pain in patients with chronic abdominal pain in a phase 2 placebo-controlled study. Clin Gastroenterol Hepatol 15(7):1079–1086. e4PubMedCrossRefPubMedCentralGoogle Scholar
- 59.Brents LK, Zimmerman SM, Saffell AR, Prather PL, Fantegrossi WE (2013) Differential drug-drug interactions of the synthetic cannabinoids JWH-018 and JWH-073: implications for drug abuse liability and pain therapy. J Pharmacol Exp Ther 346(3):350–361PubMedPubMedCentralCrossRefGoogle Scholar
- 60.Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30(10):515–527PubMedCrossRefPubMedCentralGoogle Scholar
- 61.Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ et al (2007) Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 10(7):870–879PubMedPubMedCentralCrossRefGoogle Scholar
- 62.Patwardhan AM, Jeske NA, Price TJ, Gamper N, Akopian AN, Hargreaves KM (2006) The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc Natl Acad Sci U S A 103(30):11393–11398PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Philpott HT, O’Brien M, McDougall JJ (2017) Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain 158(12):2442–2451PubMedPubMedCentralCrossRefGoogle Scholar
- 64.Barrese V, Miceli F, Soldovieri MV, Ambrosino P, Iannotti FA, Cilio MR et al (2010) Neuronal potassium channel openers in the management of epilepsy: role and potential of retigabine. Clin Pharmacol 2:225–236PubMedPubMedCentralGoogle Scholar
- 65.Korczyn AD, Schachter SC, Amlerova J, Bialer M, van Emde Boas W, Brazdil M et al (2015) Third international congress on epilepsy, brain and mind: Part 1. Epilepsy Behav 50:116–137PubMedPubMedCentralCrossRefGoogle Scholar
- 66.Rektor I, Schachter SC, Arya R, Arzy S, Braakman H, Brodie MJ et al (2015) Third international congress on epilepsy, brain, and mind: part 2. Epilepsy Behav 50:138–159PubMedCrossRefPubMedCentralGoogle Scholar
- 67.Hesdorffer DC, Beck V, Begley CE, Bishop ML, Cushner-Weinstein S, Holmes GL et al (2013) Research implications of the institute of medicine report, epilepsy across the Spectrum: promoting health and understanding. Epilepsia 54(2):207–216PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Tang F, Hartz AMS, Bauer B (2017) Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol 8:301PubMedPubMedCentralCrossRefGoogle Scholar
- 69.Hill AJ, Mercier MS, Hill TD, Glyn SE, Jones NA, Yamasaki Y et al (2012) Cannabidivarin is anticonvulsant in mouse and rat. Br J Pharmacol 167(8):1629–1642PubMedPubMedCentralCrossRefGoogle Scholar
- 70.Hill TD, Cascio MG, Romano B, Duncan M, Pertwee RG, Williams CM et al (2013) Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br J Pharmacol 170(3):679–692PubMedPubMedCentralCrossRefGoogle Scholar
- 71.Jones NA, Glyn SE, Akiyama S, Hill TD, Hill AJ, Weston SE et al (2012) Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 21(5):344–352PubMedCrossRefPubMedCentralGoogle Scholar
- 72.Wallace MJ, Wiley JL, Martin BR, DeLorenzo RJ (2001) Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol 428(1):51–57PubMedCrossRefPubMedCentralGoogle Scholar
- 73.Wallace MJ, Martin BR, DeLorenzo RJ (2002) Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 452(3):295–301PubMedCrossRefPubMedCentralGoogle Scholar
- 74.Luszczki JJ, Andres-Mach M, Barcicka-Klosowska B, Florek-Luszczki M, Haratym-Maj A, Czuczwar SJ (2011) Effects of WIN 55,212-2 mesylate (a synthetic cannabinoid) on the protective action of clonazepam, ethosuximide, phenobarbital and valproate against pentylenetetrazole-induced clonic seizures in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 35(8):1870–1876CrossRefGoogle Scholar
- 75.Luszczki JJ, Misiuta-Krzesinska M, Florek M, Tutka P, Czuczwar SJ (2011) Synthetic cannabinoid WIN 55,212-2 mesylate enhances the protective action of four classical antiepileptic drugs against maximal electroshock-induced seizures in mice. Pharmacol Biochem Behav 98(2):261–267PubMedCrossRefPubMedCentralGoogle Scholar
- 76.Mechoulam R (1970) Marihuana chemistry. Science 168(3936):1159–1166PubMedCrossRefPubMedCentralGoogle Scholar
- 77.Cunha JM, Carlini EA, Pereira AE, Ramos OL, Pimentel C, Gagliardi R et al (1980) Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21(3):175–185PubMedCrossRefPubMedCentralGoogle Scholar
- 78.Hausman-Kedem M, Menascu S, Kramer U (2018) Efficacy of CBD-enriched medical cannabis for treatment of refractory epilepsy in children and adolescents – an observational, longitudinal study. Brain Dev 40(7):544–551PubMedCrossRefPubMedCentralGoogle Scholar
- 79.Alger BE (2002) Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol 68(4):247–286PubMedCrossRefPubMedCentralGoogle Scholar
- 80.Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76PubMedCrossRefPubMedCentralGoogle Scholar
- 81.Marsicano G, Lutz B (2006) Neuromodulatory functions of the endocannabinoid system. J Endocrinol Investig 29(3 Suppl):27–46Google Scholar
- 82.Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A et al (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302(5642):84–88PubMedCrossRefPubMedCentralGoogle Scholar
- 83.Gerdeman GL, Lovinger DM (2003) Emerging roles for endocannabinoids in long-term synaptic plasticity. Br J Pharmacol 140(5):781–789PubMedPubMedCentralCrossRefGoogle Scholar
- 84.Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ (2003) The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 307(1):129–137PubMedCrossRefPubMedCentralGoogle Scholar
- 85.Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R et al (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51(4):455–466PubMedPubMedCentralCrossRefGoogle Scholar
- 86.Guggenhuber S, Monory K, Lutz B, Klugmann M (2010) AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS One 5(12):e15707PubMedPubMedCentralCrossRefGoogle Scholar
- 87.Mackie K, Hille B (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci U S A 89(9):3825–3829PubMedPubMedCentralCrossRefGoogle Scholar
- 88.Hampson RE, Evans GJ, Mu J, Zhuang SY, King VC, Childers SR et al (1995) Role of cyclic AMP dependent protein kinase in cannabinoid receptor modulation of potassium “A-current” in cultured rat hippocampal neurons. Life Sci 56(23–24):2081–2088PubMedCrossRefPubMedCentralGoogle Scholar
- 89.Mackie K, Lai Y, Westenbroek R, Mitchell R (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15(10):6552–6561PubMedCrossRefPubMedCentralGoogle Scholar
- 90.Lakhan SE, Rowland M (2009) Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review. BMC Neurol 9:59PubMedPubMedCentralCrossRefGoogle Scholar
- 91.Iskedjian M, Bereza B, Gordon A, Piwko C, Einarson TR (2007) Meta-analysis of cannabis based treatments for neuropathic and multiple sclerosis-related pain. Curr Med Res Opin 23(1):17–24PubMedCrossRefPubMedCentralGoogle Scholar
- 92.Centonze D, Bari M, Rossi S, Prosperetti C, Furlan R, Fezza F et al (2007) The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain 130(Pt 10):2543–2553PubMedCrossRefPubMedCentralGoogle Scholar
- 93.Centonze D, Rossi S, Finazzi-Agro A, Bernardi G, Maccarrone M (2007) The (endo)cannabinoid system in multiple sclerosis and amyotrophic lateral sclerosis. Int Rev Neurobiol 82:171–186PubMedCrossRefPubMedCentralGoogle Scholar
- 94.Jean-Gilles L, Feng S, Tench CR, Chapman V, Kendall DA, Barrett DA et al (2009) Plasma endocannabinoid levels in multiple sclerosis. J Neurol Sci 287(1–2):212–215PubMedCrossRefPubMedCentralGoogle Scholar
- 95.Pryce G, Ahmed Z, Hankey DJ, Jackson SJ, Croxford JL, Pocock JM et al (2003) Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 126(Pt 10):2191–2202PubMedCrossRefPubMedCentralGoogle Scholar
- 96.Wade DT, Makela P, Robson P, House H, Bateman C (2004) Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 10(4):434–441PubMedCrossRefPubMedCentralGoogle Scholar
- 97.Wade DT, Collin C, Stott C, Duncombe P (2010) Meta-analysis of the efficacy and safety of Sativex (nabiximols), on spasticity in people with multiple sclerosis. Mult Scler 16(6):707–714PubMedCrossRefPubMedCentralGoogle Scholar
- 98.Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63(3):637–652PubMedCrossRefPubMedCentralGoogle Scholar
- 99.Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25(8):1904–1913PubMedCrossRefPubMedCentralGoogle Scholar
- 100.Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ et al (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23(35):11136–11141PubMedCrossRefPubMedCentralGoogle Scholar
- 101.Pazos MR, Nunez E, Benito C, Tolon RM, Romero J (2004) Role of the endocannabinoid system in Alzheimer’s disease: new perspectives. Life Sci 75(16):1907–1915PubMedCrossRefPubMedCentralGoogle Scholar
- 102.Eubanks LM, Rogers CJ, AEt B, Koob GF, Olson AJ, Dickerson TJ et al (2006) A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol Pharm 3(6):773–777PubMedPubMedCentralCrossRefGoogle Scholar
- 103.Milton NG (2002) Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci Lett 332(2):127–130PubMedCrossRefPubMedCentralGoogle Scholar