Advertisement

Interferometric Scattering (iSCAT) Microscopy and Related Techniques

  • Richard W. Taylor
  • Vahid SandoghdarEmail author
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Interferometric scattering (iSCAT) microscopy is a powerful tool for label-free sensitive detection and imaging of nanoparticles to high spatiotemporal resolution. As it was born out of detection principles central to conventional microscopy, we begin by surveying the historical development of the microscope to examine how the exciting possibility for interferometric scattering microscopy with sensitivities sufficient to observe single molecules has become a reality. We discuss the theory of interferometric detection and also issues relevant to achieving a high detection sensitivity and speed. A showcase of numerous applications and avenues of novel research across various disciplines that iSCAT microscopy has opened up is also presented.

Notes

Acknowledgements

We are grateful to a large number of fantastic group members, former and present, who have contributed to the advances of iSCAT in our laboratories. We also thank the Alexander von Humboldt Foundation for their generous support in the context of a Humboldt Professorship (VS) and Postdoctoral Fellowship (RWT) as well the Max Planck Society for continuous support.

References

  1. 1.
    M. Fernández-Suárez, A.Y. Ting, Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008)CrossRefGoogle Scholar
  2. 2.
    E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9(1), 413–418 (1873)CrossRefGoogle Scholar
  3. 3.
    J. Steinhardt, Intensity discrimination in the human eye: I. The relation of \({\Delta }\)I/I to intensity. J. Gen. Physiol. 20(2), 185–209 (1936)Google Scholar
  4. 4.
    L.C. Martin, B.K. Johnson, Practical Microscopy (Blackie & Son Limited, 1931)Google Scholar
  5. 5.
    J.J. Lister, On some properties in achromatic object-glasses applicable to the improvement of the microscope. Philos. Trans. R. Soc. Lond. 120, 187–200 (1830)ADSCrossRefGoogle Scholar
  6. 6.
    S.H. Gage, Modern dark-field microscopy and the history of its development. Trans. Am. Microsc. Soc. 39(2), 95–141 (1920)CrossRefGoogle Scholar
  7. 7.
    H. Siedentopf, R. Zsigmondy, Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann. Phys. 315(1), 1–39 (1902)CrossRefGoogle Scholar
  8. 8.
    F. Zernike, Diffraction theory of the knife-edge test and its improved form, the phase-contrast method. Mon. Not. R. Astron. Soc. 94(5), 377–384 (1934)ADSCrossRefGoogle Scholar
  9. 9.
    F. Zernike, The concept of degree of coherence and its application to optical problems. Physica 5(8), 785–795 (1938)ADSCrossRefGoogle Scholar
  10. 10.
    F. Zernike, How I discovered phase contrast. Science 121(3141), 345–349 (1955)ADSCrossRefGoogle Scholar
  11. 11.
    F. Zernike, Phase contrast, a new method for the microscopic observation of transparent objects part I. Physica 9(7), 686–698 (1942)ADSCrossRefGoogle Scholar
  12. 12.
    F. Zernike, Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica 9(10), 974–986 (1942)ADSCrossRefGoogle Scholar
  13. 13.
    G. Normarski, Dispositif Oculaire a Contraste De phase pour microscope. J. De Phys. Et Le Radiu. 11(12), 9–10 (1950)Google Scholar
  14. 14.
    J. Jamin, Neuer interferential-refractor. Ann. der Phys. und Chem. 174(6), 345–349 (1856)ADSCrossRefGoogle Scholar
  15. 15.
    J.L. Sirks, Over een interferentiemicroscoop. Handelingen van het vierde Nederlandisch Natuuren. Geneskundig Congress 4, 92–98 (1893)Google Scholar
  16. 16.
    W.E. Kock, Nobel Prize for Physics: Gabor and Holography. Science 174(4010), 674–675 (1971)Google Scholar
  17. 17.
    G.W. Ellis, Holomicrography: transformation of image during reconstruction a posteriori. Science 154(3753), 1195–1197 (1966)ADSCrossRefGoogle Scholar
  18. 18.
    W. Krug, J. Rienitz, G. Schulz, Contributions to Interference Microscopy (Hilger & Watts, 1964)Google Scholar
  19. 19.
    M. Shribak, in Handbook of Optics, vol. 1, ed. by M. Bass (McGraw-Hill, 2006)Google Scholar
  20. 20.
    G.A. Dunn, Quantitative interference microscopy, in New Techniques of Optical Microscopy and Microspectroscopy, ed. by R.J. Cherry (CRC Press, 1991)Google Scholar
  21. 21.
    P. de Groot, Principles of interference microscopy for the measurement of surface topography. Adv. Opt. Photonics 7(1), 1–65 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Renz, Fluorescence microscopy a historical and technical perspective. Cytom. Part A 83(9), 767–779 (2013)CrossRefGoogle Scholar
  23. 23.
    B.R. Masters, The development of fluorescence microscopy, in Encyclopedia of Life Sciences (ELS) (Wiley, 2010)Google Scholar
  24. 24.
    M. Minsky, Memoir on inventing the confocal scanning microscope. Scanning 10(4), 128–138 (1988)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A.S.G. Curtis, The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell Biol. 20(2), 199–215 (1964)CrossRefGoogle Scholar
  26. 26.
    J.S. Ploem, Reflection-contrast microscopy as a tool for investigation of the attachment of living cells to a glass surface, in Mononuclear Phagocytes in Immunity, Infection and Pathology, ed. by R. van Furth (Blackwell Scientific, 1975)Google Scholar
  27. 27.
    M. Abercrombie, G.A. Dunn, Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp. Cell Res. 92(1), 57–62 (1975)CrossRefGoogle Scholar
  28. 28.
    C.S. Izzard, L.R. Lochner, Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J. Cell Sci. 21, 129–159 (1976)Google Scholar
  29. 29.
    J.P. Heath, G.A. Dunn, Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. J. Cell Sci. 29(1), 197–212 (1978)Google Scholar
  30. 30.
    J. Wehland, M. Osborn, K. Weber, Cell-to-substratum contacts in living cells: a direct correlation between interference-reflexion and indirect-immunofluorescence microscopy using antibodies against actin and alpha-actinin. J. Cell Sci. 37, 257–273 (1979)Google Scholar
  31. 31.
    M. Opas, V.I. Kalnins, Surface reflection interference microscopy: a new method for visualizing cytoskeletal components by light microscopy. J. Microsc. 133(3), 291–306 (1984)CrossRefGoogle Scholar
  32. 32.
    J. Bereiter-Hahn, C.H. Fox, B. Thorell, Quantitative reflection contrast microscopy of living cells. J. Cell Biol. 82(3), 767–779 (1979)CrossRefGoogle Scholar
  33. 33.
    A. Zilker, H. Engelhardt, E. Sackmann, Dynamic reflection interference contrast (RIC-) microscopy: a new method to study surface excitations of cells and to measure membrane bending elastic moduli. J. Phys. 48(12), 2139–2151 (1987)CrossRefGoogle Scholar
  34. 34.
    J. Rädler, E. Sackmann, Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces. J. Phys. II 3(5), 727–748 (1993)Google Scholar
  35. 35.
    G. Wiegand, K.R. Neumaier, E. Sackmann, Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM). Appl. Opt. 37(29), 6892 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    J. Dvorak et al., Invasion of erythrocytes by malaria merozoites. Science 187(4178), 748–750 (1975)ADSCrossRefGoogle Scholar
  37. 37.
    R.D. Allen, N.S. Allen, J.L. Travis, Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil. 1(3), 291–302 (1981)CrossRefGoogle Scholar
  38. 38.
    S. Inoué, Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy. J. Cell Biol. 89(2), 346–356 (1981)CrossRefGoogle Scholar
  39. 39.
    R.J. Walter, M.W. Berns, Computer-enhanced video microscopy: digitally processed microscope images can be produced in real time. Proc. Natl. Acad. Sci. U.S.A. 78(11), 6927–6931 (1981)ADSCrossRefGoogle Scholar
  40. 40.
    R.D. Allen, N.S. Allen, Video-enhanced microscopy with a computer frame memory. J. Microsc. 129(1), 3–17 (1983)CrossRefGoogle Scholar
  41. 41.
    E.D. Salmon, P. Tran, High-resolution video-enhanced differential interference contrast light microscopy. Methods Cell Biol. 72, 289–318 (2003)CrossRefGoogle Scholar
  42. 42.
    S. Inoué, Video Microscopy (Springer, 1986)Google Scholar
  43. 43.
    S.T. Brady et al., Fast axonal transport in extruded axoplasm from squid giant axon. Science 218(4577), 1129–1131 (1982)ADSCrossRefGoogle Scholar
  44. 44.
    R.D. Allen et al., New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Annu. Rev. Biophys. Chem. 14(1), 265–290 (1985)MathSciNetCrossRefGoogle Scholar
  45. 45.
    B.J. Schnapp et al., Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell 40(2), 455–462 (1985)CrossRefGoogle Scholar
  46. 46.
    D.G. Weiss, Visualization of the living cytoskeleton by video-enhanced microscopy and digital image processing. J. Cell Sci. Suppl. 5, 1–15 (1986)CrossRefGoogle Scholar
  47. 47.
    B. Herman, D.F. Albertini, A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation. J. Cell Biol. 98(2), 565–576 (1984)CrossRefGoogle Scholar
  48. 48.
    M. De Brabander et al., Microtubule-dependent intracellular motility investigated with nanometer particle video ultramicroscopy (nanovid ultramicroscopy). Ann. N. Y. Acad. Sci. 466, 666–668 (1986)ADSCrossRefGoogle Scholar
  49. 49.
    H. Geerts et al., Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys. J. 52(5), 775–782 (1987)ADSCrossRefGoogle Scholar
  50. 50.
    B.J. Schnapp, J. Gelles, M.P. Sheetz, Nanometer-scale measurements using video light microscopy. Cell Motil. Cytoskelet. 10, 47–53 (1988)CrossRefGoogle Scholar
  51. 51.
    M. De Brabander et al., Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil. Cytoskelet. 9(1), 30–47 (1988)CrossRefGoogle Scholar
  52. 52.
    M.P. Sheetz et al., Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature 340(6231), 284–288 (1989)ADSCrossRefGoogle Scholar
  53. 53.
    H. Geerts, M. De Brabander, R. Nuydens, Nanovid microscopy. Nature 351(6231), 765–766 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    A. Kusumi et al., Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34(1), 351–378 (2005)CrossRefGoogle Scholar
  55. 55.
    A. Kusumi et al., Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of singer and nicolson’s fluid-mosaic model. Annu. Rev. Cell Dev. Biol. 28(1), 215–250 (2012)CrossRefGoogle Scholar
  56. 56.
    D.R. Pettit, T.W. Peterson, Coherent detection of scattered light from submicron aerosols. Aerosol Sci. Technol. 2(3), 351–368 (1982)ADSCrossRefGoogle Scholar
  57. 57.
    J.S. Batchelder, M.A. Taubenblatt, Interferometric detection of forward scattered light from small particles. Appl. Phys. Lett. 55(3), 215–217 (1989)ADSCrossRefGoogle Scholar
  58. 58.
    D.W. Pohl, W. Denk, M. Lanz, Optical stethoscopy: Image recording with resolution \(\lambda \)/20. Appl. Phys. Lett. 44(7), 651–653 (1984)ADSCrossRefGoogle Scholar
  59. 59.
    G. Binnig, C.F. Quate, Ch. Gerber, Atomic Force Microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)ADSCrossRefGoogle Scholar
  60. 60.
    W.E. Moerner, L. Kador, Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62(21), 2535–2538 (1989)ADSCrossRefGoogle Scholar
  61. 61.
    R.P. Feynman, There’s plenty of room at the bottom. Eng. Sci. 23(5), 22–36 (1960)Google Scholar
  62. 62.
    F. Zenhausern, M.P. O’Boyle, H.K. Wickramasinghe, Apertureless near-field optical microscope. Appl. Phys. Lett. 65(13), 1623–1625 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    V. Sandoghdar et al., Reflection scanning near-field optical microscopy with uncoated fiber tips: How good is the resolution really? J. Appl. Phys. 81(6), 2499–2503 (1997)ADSCrossRefGoogle Scholar
  64. 64.
    R. Hillenbrand, B. Knoll, F. Keilmann, Pure optical contrast in scattering-type scanning near-field microscopy. J. Microsc. 202(1), 77–83 (2001)MathSciNetCrossRefGoogle Scholar
  65. 65.
    T. Taubner, R. Hillenbrand, F. Keilmann, Performance of visible and mid-infrared scattering-type near-field optical microscopes. J. Microsc. 210(3), 311–314 (2003)MathSciNetCrossRefGoogle Scholar
  66. 66.
    I. Amenabar et al., Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, 1–9 (2013)CrossRefGoogle Scholar
  67. 67.
    T. Klar et al., Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 80(19), 4249–4252 (1998)ADSCrossRefGoogle Scholar
  68. 68.
    S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000)ADSCrossRefGoogle Scholar
  69. 69.
    C. Sönnichsen et al., Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 77(19), 2949–2951 (2000)ADSCrossRefGoogle Scholar
  70. 70.
    M.Y. Sfeir et al., Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 306(5701), 1540–1543 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    D. Boyer et al., Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297(5584), 1160–1163 (2002)ADSCrossRefGoogle Scholar
  72. 72.
    S. Berciaud et al., Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett. 93(25), 2–5 (2004)CrossRefGoogle Scholar
  73. 73.
    K. Lindfors et al., Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93(3), 037401 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    A. Arbouet et al., Direct measurement of the single-metal-cluster optical absorption. Phys. Rev. Lett. 93(12), 127401 (2004)ADSCrossRefGoogle Scholar
  75. 75.
    S. Simmert et al., LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging. Opt. Express 26(11), 14499 (2018)ADSCrossRefGoogle Scholar
  76. 76.
    M. Mahamdeh et al., Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy. J. Microsc. 272(1), 60–66 (2018)CrossRefGoogle Scholar
  77. 77.
    G.G. Daaboul et al., High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. Nano Lett. 10(11), 4727–4731 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    O. Avci et al., Interferometric Reflectance Imaging Sensor (IRIS)–A Platform Technology for Multiplexed Diagnostics and Digital Detection. Sensors 15(7), 17649–17665 (2015)CrossRefGoogle Scholar
  79. 79.
    A. Yurt et al., High-throughput size determination of nearly spherical gold nanoparticles, in 2011 XXXth URSI General Assembly and Scientific Symposium, vol. 1 (2011), pp. 1–4Google Scholar
  80. 80.
    A. Matlock et al., Differential Phase Contrast and Digital Refocusing in a Computational Reflection Interferometric Microscope for Nanoparticle Imaging CTh4B.2 (2017)Google Scholar
  81. 81.
    S.M. Scherr et al., Real-time capture and visualization of individual viruses in complex media. ACS Nano 10(2), 2827–2833 (2016)CrossRefGoogle Scholar
  82. 82.
    G.G. Daaboul et al., Digital detection of exosomes by interferometric imaging. Sci. Rep. 6, 1–10 (2016)CrossRefGoogle Scholar
  83. 83.
    G.G. Daaboul et al., Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebola viruses. PLoS ONE 12(6), 1–15 (2017)CrossRefGoogle Scholar
  84. 84.
    D. Sevenler, O. Avci, M.S. Ünlü, Quantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticles. Biomed. Opt. Express 8(6), 2976 (2017)CrossRefGoogle Scholar
  85. 85.
    D. Sevenler et al., Digital microarrays: single-molecule readout with interferometric detection of plasmonic nanorod labels. ACS Nano 12(6), 5880–5887 (2018)CrossRefGoogle Scholar
  86. 86.
    S. Wang et al., Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    H. Yu et al., Plasmonic imaging and detection of single DNA molecules. ACS Nano 8(4), 3427–3433 (2014)CrossRefGoogle Scholar
  88. 88.
    Y. Yang et al., Interferometric plasmonic imaging and detection of single exosomes. Proc. Natl. Acad. Sci. U.S.A. 115(41), 10275–10280 (2018)CrossRefGoogle Scholar
  89. 89.
    X. Shan et al., Imaging the electrocatalytic activity of single nanoparticles. Nat. Nanotechnol. 7(10), 668–672 (2012)ADSCrossRefGoogle Scholar
  90. 90.
    M.D. Koch, A. Rohrbach, Label-free imaging and bending analysis of microtubules by ROCS microscopy and optical trapping. Biophys. J. 114(1), 168–177 (2018)ADSCrossRefGoogle Scholar
  91. 91.
    M.E. Kandel et al., Label-free imaging of single microtubule dynamics using spatial light interference microscopy. ACS Nano 11(1), 647–655 (2017)CrossRefGoogle Scholar
  92. 92.
    J. Schilling et al., Absolute interfacial distance measurements by dual-wavelength reflection interference contrast microscopy. Phys. Rev. E. 69(2), 1–9 (2004)CrossRefGoogle Scholar
  93. 93.
    L. Limozin, K. Sengupta, Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. ChemPhysChem 10(16), 2752–2768 (2009)CrossRefGoogle Scholar
  94. 94.
    T. Matsuzaki et al., High contrast visualization of cell-hydrogel contact by advanced interferometric optical microscopy. J. Phys. Chem. Lett. 5(1), 253–257 (2014) MathSciNetCrossRefGoogle Scholar
  95. 95.
    T. Matsuzaki et al., Quantitative evaluation of cancer cell adhesion to self-assembled monolayer-patterned substrates by reflection interference contrast microscopy. J. Phys. Chem. B. 120(7), 1221–1227 (2016)CrossRefGoogle Scholar
  96. 96.
    P. Dillard et al., Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization. Interg. Biol. 8(3), 287–301 (2016)CrossRefGoogle Scholar
  97. 97.
    M.J. Dejardin et al., Lamellipod reconstruction by three-dimensional reflection interference contrast nanoscopy (3D-RICN). Nano Lett. 18(10), 6544–6550 (2016)ADSCrossRefGoogle Scholar
  98. 98.
    F. Jünger, P.V. Olshausen, A. Rohrbach, Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy. Sci. Rep. 6, 1–11 (2016)CrossRefGoogle Scholar
  99. 99.
    F. Jünger, A. Rohrbach, Strong cytoskeleton activity on millisecond timescales upon particle binding revealed by ROCS microscopy. Cytoskeleton 75(9), (2018)CrossRefGoogle Scholar
  100. 100.
    J.C. Contreras-Naranjo, V.M. Ugaz, A nanometre-scale resolution interference-based probe of interfacial phenomena between microscopic objects and surfaces. Nat. Commun. 4(1), 1919 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    L.D. Chiu et al., Use of a white light supercontinuum laser for confocal interference-reflection microscopy. J. Microsc. 246(2), 153–159 (2012)MathSciNetCrossRefGoogle Scholar
  102. 102.
    B. Redding et al., Full-field interferometric confocal microscopy using a VCSEL array. Opt. Lett. 39(15), 4446 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    I. Sencan et al., Ultrahigh-speed, phase-sensitive full-field interferometric confocal microscopy for quantitative microscale physiology. Biomed. Opt. Express 7(11), 4674 (2016)CrossRefGoogle Scholar
  104. 104.
    A.J. Schain, R.A. Hill, J. Grutzendler, Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy. Nat. Med. 20(4), 443–449 (2014)CrossRefGoogle Scholar
  105. 105.
    T.H. Nguyen et al., Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8(1) (2017)Google Scholar
  106. 106.
    Y.F. Huang et al., Coherent brightfield microscopy provides the spatiotemporal resolution to study early stage viral infection in live cells. ACS Nano 11(3), 2575–2585 (2017)CrossRefGoogle Scholar
  107. 107.
    M. Delor et al., Imaging material functionality through 3D nanoscale tracking of energy flow.arXiv:1805.09982v3 (2019)
  108. 108.
    G. Young et al., Quantitative mass imaging of single biological macromolecules. Science 360(6387), 423–427 (2018)ADSCrossRefGoogle Scholar
  109. 109.
    A.E. Siegman, Lasers (University Science Books, 1986)Google Scholar
  110. 110.
    X. Pang, T.D. Visser, E. Wolf, Phase anomaly and phase singularities of the field in the focal region of high-numerical aperture systems. Opt. Commun. 284(24), 5517–5522 (2011)ADSCrossRefGoogle Scholar
  111. 111.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998)Google Scholar
  112. 112.
    H.A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer, 2000)Google Scholar
  113. 113.
    V. Jacobsen et al., Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt. Express 14(1), 405–14 (2006)ADSCrossRefGoogle Scholar
  114. 114.
    P. Kukura et al., Imaging a single quantum dot when it is dark. Nano Lett. 9(3), 926–929 (2009)ADSCrossRefGoogle Scholar
  115. 115.
    H. Ewers et al., Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers. Nano Lett. 7(8), 2263–2266 (2007)ADSCrossRefGoogle Scholar
  116. 116.
    P. Kukura et al., High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6(12), 923–927 (2009)CrossRefGoogle Scholar
  117. 117.
    M. Krishnan et al., Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467(7316), 692–695 (2010)ADSCrossRefGoogle Scholar
  118. 118.
    S. Spindler et al., Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy. J. Phys. D: Appl. Phys. 49(27), 274002 (2016)ADSCrossRefGoogle Scholar
  119. 119.
    M. Piliarik, V. Sandoghdar, Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 1–8 (2014)CrossRefGoogle Scholar
  120. 120.
    J.O. Arroyo et al., Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14(4), 2065–2070 (2014)ADSCrossRefGoogle Scholar
  121. 121.
    J.O. Arroyo, P. Kukura, Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy. Nat. Photonics 10(1), 11–17 (2016)ADSCrossRefGoogle Scholar
  122. 122.
    J. Andrecka et al., Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy. ACS Nano 7(12), 10662–10670 (2013)CrossRefGoogle Scholar
  123. 123.
    G. de Wit et al., Dynamic label-free imaging of lipid nanodomains. Proc. Natl. Acad. Sci. U.S.A. 112(40), 12299–12303 (2015)ADSCrossRefGoogle Scholar
  124. 124.
    R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000)Google Scholar
  125. 125.
    G. Zumofen et al., Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101(18), 180404 (2008)Google Scholar
  126. 126.
    K.G. Lee et al., A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat. Photonics 5(3), 166–169 (2011)ADSCrossRefGoogle Scholar
  127. 127.
    W. Lukosz, Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation. J. Opt. Soc. Am. 69(11), 1495–1503 (1979)ADSCrossRefGoogle Scholar
  128. 128.
    M. Liebel et al., Ultrasensitive label-free nanosensing and high-speed tracking of single proteins. Nano Lett. 17(2), 1277–1281 (2017)ADSCrossRefGoogle Scholar
  129. 129.
    D. Cole et al., Label-free single-molecule imaging with numerical-aperture-shaped interferometric scattering microscopy. ACS Photonics 4(2), 211–216 (2017)MathSciNetCrossRefGoogle Scholar
  130. 130.
    O. Avci et al., Pupil function engineering for enhanced nanoparticle visibility in wide-field interferometric microscopy. Optica 4(2), 247–254 (2017)CrossRefGoogle Scholar
  131. 131.
    S. Faez et al., Coherent interaction of light and single molecules in a dielectric nanoguide. Phys. Rev. Lett. 113(21), 213601 (2014)ADSCrossRefGoogle Scholar
  132. 132.
    S. Faez, Y. Lahini, S. Weidlich, R.F. Garmann, Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber. ACS Nano 9(12), 12349–12357 (2015)CrossRefGoogle Scholar
  133. 133.
    M. Celebrano et al., Single-molecule imaging by optical absorption. Nat. Photonics 5(2), 95–98 (2011)ADSCrossRefGoogle Scholar
  134. 134.
    A. Gemeinhardt et al., Label-free imaging of single proteins secreted from living cells via iSCAT microscopy. J. Vis. Exp. (141), e58486 (2018)Google Scholar
  135. 135.
    G. Wrigge et al., Exploring the limits of single emitter detection in fluorescence and extinction. Opt. Express 16(22), 17358 (2008)ADSCrossRefGoogle Scholar
  136. 136.
    C.L. Hsieh et al., Tracking single particles on supported lipid membranes: multimobility diffusion and nanoscopic confinement. J. Phys. Chem. B. 118(6), 1545–1554 (2014)CrossRefGoogle Scholar
  137. 137.
    C.Y. Cheng, C.L. Hsieh, Background estimation and correction for high-precision localization microscopy. ACS Photonics 4(7), 1730–1739 (2017)CrossRefGoogle Scholar
  138. 138.
    R.W. Taylor et al., Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics 13, 480–487 (2019)ADSCrossRefGoogle Scholar
  139. 139.
    A. Weigel, A. Sebesta, P. Kukura, Dark field microspectroscopy with single molecule fluorescence sensitivity. ACS Photonics 1(9), 848–856 (2014)CrossRefGoogle Scholar
  140. 140.
    H. Deschout et al., Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11(3), 253–266 (2014)CrossRefGoogle Scholar
  141. 141.
    O. Avci et al., Physical modeling of interference enhanced imaging and characterization of single nanoparticles. Opt. Express 24(6), 6094 (2016)ADSCrossRefGoogle Scholar
  142. 142.
    R. Gholami Mahmoodabadi et al. Fast and precise 3D tracking of nanoparticles in interferometric scattering microscopy, In preparationGoogle Scholar
  143. 143.
    P. Kukura et al., Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1(23), 3323–3327 (2010)CrossRefGoogle Scholar
  144. 144.
    J.T. Trueb et al., Robust visualization and discrimination of nanoparticles by interferometric imaging. IEEE J. Sel. Top. Quantum Electron 23(2), 394–403 (2017)ADSCrossRefGoogle Scholar
  145. 145.
    K. Holanová, M. Vala, M. Piliarik, Optical imaging and localization of prospective scattering labels smaller than a single protein. Opt. Laser Technol. 109, 323–327 (2019)ADSCrossRefGoogle Scholar
  146. 146.
    T. Kalkbrenner et al., A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202(1), 72–76 (2001)MathSciNetCrossRefGoogle Scholar
  147. 147.
    L. Zhang et al., Interferometric detection of single gold nanoparticles calibrated against TEM size distributions. Small 11(29), 3550–3555 (2015)CrossRefGoogle Scholar
  148. 148.
    I.B. Lee et al., Interferometric scattering microscopy with polarization-selective dual detection scheme: capturing the orientational information of anisotropic nanometric objects. ACS Photonics 5(3), 797–804 (2018)CrossRefGoogle Scholar
  149. 149.
    P. Stoller, V. Jacobsen, V. Sandoghdar, Measurement of the complex dielectric constant of a single gold nanoparticle. Opt. Lett. 31(16), 2474 (2006)ADSCrossRefGoogle Scholar
  150. 150.
    J.T. Kim, S. Spindler, V. Sandoghdar, Scanning-aperture trapping and manipulation of single charged nanoparticles. Nat. Commun. 5(1), 3380 (2014)ADSCrossRefGoogle Scholar
  151. 151.
    S. Fringes, M. Skaug, A.W. Knoll, In situ contrast calibration to determine the height of individual diffusing nanoparticles in a tunable confinement. J. Appl. Phys. 119(2), 024303 (2016)Google Scholar
  152. 152.
    Y. Tuna et al., Levitated plasmonic nanoantennas in an aqueous environment. ACS Nano 11(8), 7674–7678 (2017)CrossRefGoogle Scholar
  153. 153.
    R. Rigler, M. Orrit, T. Basche (eds.), Single Molecule Spectroscopy (Springer, Berlin, Heidelberg, 2001)Google Scholar
  154. 154.
    J. Hwang, M.M. Fejer, W.E. Moerner, Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter. Phys. Rev. A 73(2), 021802 (2006)Google Scholar
  155. 155.
    A. Gaiduk et al., Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330(6002), 353–356 (2010)ADSCrossRefGoogle Scholar
  156. 156.
    S. Chong, W. Min, X. Sunney Xie, Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1(23), 3316–3322 (2010)CrossRefGoogle Scholar
  157. 157.
    C.M. Robinson, J.K. Pfeiffer, Viruses and the microbiota. Annu. Rev. Virol. 1(1), 55–69 (2014)CrossRefGoogle Scholar
  158. 158.
    M. Mietzsch, M. Agbandje-McKenna, The good that viruses do. Ann. Rev. Virol. 4(1), iii–v (2017)CrossRefGoogle Scholar
  159. 159.
    R. Milo, R. Phillips, Cell Biology by the Numbers (Taylor & Francis Ltd., 2015)Google Scholar
  160. 160.
    F.V. Ignatovich, L. Novotny, Real-time and background-free detection of nanoscale particles. Phys. Rev. Lett. 96(1), 013901 (2006)Google Scholar
  161. 161.
    A. Mitra et al., Nano-optofluidic detection of single viruses and nanoparticles. ACS Nano 4(3), 1305–1312 (2010)MathSciNetCrossRefGoogle Scholar
  162. 162.
    A.M. Goldfain et al., Dynamic measurements of the position, orientation, and DNA content of individual unlabeled bacteriophages. J. Phys. Chem. B 120(26), 6130–6138 (2016)CrossRefGoogle Scholar
  163. 163.
    S. Faez et al., Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber. ACS Nano 9(12), 12349–12357 (2015)CrossRefGoogle Scholar
  164. 164.
    M.P. McDonald et al., Visualizing single-cell secretion dynamics with single-protein sensitivity. Nano Lett. 18(1), 513–519 (2018)ADSCrossRefGoogle Scholar
  165. 165.
    P. Zijlstra, P.M.R. Paulo, M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7(6), 379–382 (2012)ADSCrossRefGoogle Scholar
  166. 166.
    F. Vollmer, S. Arnold, Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5(7), 591–596 (2008)CrossRefGoogle Scholar
  167. 167.
    K.J. Mickolajczyk et al., Direct observation of individual tubulin dimers binding to growing microtubules. Proc. Natl. Acad. Sci. U.S.A. 116(15), 7314–7322 (2019)CrossRefGoogle Scholar
  168. 168.
    J. Andrecka et al., Label-free imaging of microtubules with sub-nm precision using interferometric scattering microscopy. Biophys. J. 110(1), 214–217 (2016)ADSCrossRefGoogle Scholar
  169. 169.
    R.F. Garmann, A.M. Goldfain, V.N. Manoharan, Measurements of the self-assembly kinetics of individual viral capsids around their RNA genome. bioRxiv 265330 (2018)Google Scholar
  170. 170.
    L. Talà et al., Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements. Nat. Microbiol. 4, 774–780 (2019)CrossRefGoogle Scholar
  171. 171.
    J.R. Heath, A. Ribas, P.S. Mischel, Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 15(3), 204–216 (2016)CrossRefGoogle Scholar
  172. 172.
    J. Andrecka et al., Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy. eLife 4, e05413 (2015)Google Scholar
  173. 173.
    K.M. Spillane et al., High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett. 14(9), 5390–5397 (2014)ADSCrossRefGoogle Scholar
  174. 174.
    H.-M. Wu, Y.-H. Lin, T.-C. Yen, C.-L. Hsieh, Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci. Rep. 6(1), 20542 (2016)ADSCrossRefGoogle Scholar
  175. 175.
    P.J. Slator, N.J. Burroughs, A hidden Markov model for detecting confinement in single-particle tracking trajectories. Biophys. J. 115(9), 1741–1754 (2018)ADSCrossRefGoogle Scholar
  176. 176.
    F. Reina et al., Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy. J. Phys. D: Appl. Phys. 51(23), 235401 (2018)ADSCrossRefGoogle Scholar
  177. 177.
    Y.-H. Lin, W.-L. Chang, C.-L. Hsieh, Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Opt. Express 22(8), 9159–9170 (2014)ADSCrossRefGoogle Scholar
  178. 178.
    S. Spindler et al., High-speed microscopy of diffusion in pore-spanning lipid membranes. Nano Lett. 18(8), 5262–5271 (2018)ADSCrossRefGoogle Scholar
  179. 179.
    H. Stein et al., Production of isolated giant unilamellar vesicles under high salt concentrations. Front. Physiol. 8, 1–16 (2017)ADSCrossRefGoogle Scholar
  180. 180.
    P.L. Luisi, P. Walde, Giant Vesicles (Wiley, 2000)Google Scholar
  181. 181.
    J. Bernardino de la Serna et al., There is no simple model of the plasma membrane organization. Front. Cell Dev. Biol. 4(106), 1–17 (2016)Google Scholar
  182. 182.
    E. Sezgin et al., The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18(6), 361–374 (2017)CrossRefGoogle Scholar
  183. 183.
    G. de Wit et al., Revealing compartmentalized diffusion in living cells with interferometric scattering microscopy. Biophys. J. 114(12), 2945–2950 (2018)CrossRefGoogle Scholar
  184. 184.
    B. Gutiérrez-Medina, S. M. Block, Visualizing individual microtubules by bright field microscopy. Am. J. Phys. 78(11), 1152–1159 (2010)ADSCrossRefGoogle Scholar
  185. 185.
    D. Köster et al., Visualizing acto-myosin dynamics and vortices at a membrane surface using interferometric scattering microscopy. bioRxiv 199778v3 (2018)Google Scholar
  186. 186.
    Y.-F. Huang et al., Label-free, ultrahigh-speed, 3D observation of bidirectional and correlated intracellular cargo transport by coherent brightfield microscopy. Nanoscale 9(19), 6567–6574 (2017)CrossRefGoogle Scholar
  187. 187.
    W. Choi et al., Tomographic phase microscopy. Nat. Methods 4(9), 717–719 (2007)CrossRefGoogle Scholar
  188. 188.
    Z. Yaqoob et al., Single-shot full-field reflection phase microscopy. Opt. Express 19(8), 7587 (2011)ADSCrossRefGoogle Scholar
  189. 189.
    K. Klein et al., Cell membrane topology analysis by RICM enables marker-free adhesion strength quantification. Biointerphases 8(1), 1–13 (2013)CrossRefGoogle Scholar
  190. 190.
    J.-S. Park et al., Label-free and live cell imaging by interferometric scattering microscopy. Chem. Sci. 9, 2690–2697 (2018)CrossRefGoogle Scholar
  191. 191.
    G. Popescu et al., Optical measurement of cell membrane tension. Phys. Rev. Lett. 97(21), 1–4 (2006)CrossRefGoogle Scholar
  192. 192.
    G. Popescu et al., Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. J. Biomed. Opt. 10(6), 060503 (2005)ADSCrossRefGoogle Scholar
  193. 193.
    C. Monzel, K. Sengupta, Measuring shape fluctuations in biological membranes. J. Phys. D: Appl. Phys. 49(24), 243002–6 (2016)ADSCrossRefGoogle Scholar
  194. 194.
    A. Biswas, A. Alex, B. Sinha, Mapping cell membrane fluctuations reveals their active regulation and transient heterogeneities. Biophys. J. 113(8), 1768–1781 (2017)ADSCrossRefGoogle Scholar
  195. 195.
    H. Yu et al., Tracking fast cellular membrane dynamics with sub-nm accuracy in the normal direction. Nanoscale 10(11), 5133–5139 (2018)CrossRefGoogle Scholar
  196. 196.
    Y. Yang et al., Imaging action potential in single mammalian neurons by tracking the accompanying sub-nanometer mechanical motion. ACS Nano 12(5), 4186–4193 (2018)CrossRefGoogle Scholar
  197. 197.
    A. Kusumi, Y. Sako, M. Yamamoto, Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65(5), 2021–2040 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for the Science of LightErlangenGermany

Personalised recommendations