Advertisement

Endoscopic Lesion Recognition and Advanced Imaging Modalities

  • Jorge D. Machicado
  • Jennifer M. Kolb
  • Sachin B. Wani
Chapter

Abstract

Lesion recognition and characterization is one of the most important tasks during endoscopic evaluation of the gastrointestinal tract. This has been facilitated in the last few decades by the explosive growth of optical, cross-sectional, and molecular methods. Several advanced imaging modalities (AIMs) have been studied extensively to achieve the following goals: improve detection of neoplastic lesions, predict histology, and guide endoscopic therapies. In this chapter, we will review the basic principles of advanced imaging modalities and their applicability in Barrett’s esophagus (BE), gastric and duodenal cancer, colon polyps, and inflammatory bowel disease. Additional aims include providing guidance regarding optimal utilization of these modalities in clinical practice, as well as training and competency based on published guidelines and quality indicators in endoscopy.

Keywords

Lesion recognition Advanced imaging modalities Barrett’s esophagus Gastric cancer Duodenal cancer Colon polyp Inflammatory bowel disease 

References

  1. 1.
    Hirschowitz BI, Peters CW, Curtiss LE. Preliminary report on a long fiberscope for examination of stomach and duodenum. Med Bull (Ann Arbor). 1957;23:178–80.Google Scholar
  2. 2.
    Catalano MF, Van Dam J, Bedford R, et al. Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system. Gastrointest Endosc. 1993;39:23–8.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Subramanian V, Ragunath K. Advanced endoscopic imaging: a review of commercially available technologies. Clin Gastroenterol Hepatol. 2014;12:368–76.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Waye JD, Aisenberg J, Rubin PH. Practical colonoscopy. 1st ed. Wiley-Blackwell: Oxford, UK; 2013.CrossRefGoogle Scholar
  5. 5.
    Udagawa T, Amano M, Okada F. Development of magnifying video endoscopies with high resolution. Dig Endosc. 2001;13:163–9.CrossRefGoogle Scholar
  6. 6.
    Committee AT, Kwon RS, Adler DG, et al. High-resolution and high-magnification endoscopes. Gastrointest Endosc. 2009;69:399–407.CrossRefGoogle Scholar
  7. 7.
    Committee AT. High-definition and high-magnification endoscopes. Gastrointest Endosc. 2014;80:919–27.CrossRefGoogle Scholar
  8. 8.
    Kaltenbach T, Shergill AK, Wallace MB. How to obtain and use chromoendoscopy dyes for surveillance colonoscopy in inflammatory bowel disease: a technical guide. Gastrointest Endosc. 2017;86:949–51.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Shimizu Y, Takahashi M, Mizushima T, et al. Chromoendoscopy with iodine staining, as well as narrow-band imaging, is still useful and reliable for screening of early esophageal squamous cell carcinoma. Am J Gastroenterol. 2015;110:193–4.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lambert R, Rey JF, Sankaranarayanan R. Magnification and chromoscopy with the acetic acid test. Endoscopy. 2003;35:437–45.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Mizuno H, Gono K, Takehana S, et al. Narrow band imaging technique. Tech Gastrointest Endosc. 2003;5:78–81.CrossRefGoogle Scholar
  12. 12.
    Pohl J, May A, Rabenstein T, et al. Computed virtual chromoendoscopy: a new tool for enhancing tissue surface structures. Endoscopy. 2007;39:80–3.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kodashima S. Novel image-enhanced endoscopy with i-scan technology. World J Gastroenterol. 2010;16:1043.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Osawa H, Yamamoto H. Present and future status of flexible spectral imaging color enhancement and blue laser imaging technology. Dig Endosc. 2014;26(Suppl 1):105–15.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Committee AT, Song LM, Banerjee S, et al. Autofluorescence imaging. Gastrointest Endosc. 2011;73:647–50.CrossRefGoogle Scholar
  16. 16.
    Wang TD. Confocal microscopy from the bench to the bedside. Gastrointest Endosc. 2005;62:696–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Committee AT. Confocal laser endomicroscopy. Gastrointest Endosc. 2014;80:928–38.CrossRefGoogle Scholar
  18. 18.
    Kiesslich R, Goetz M, Hoffman A, et al. New imaging techniques and opportunities in endoscopy. Nat Rev Gastroenterol Hepatol. 2011;8:547–53.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Committee AT. Enhanced imaging in the GI tract: spectroscopy and optical coherence tomography. Gastrointest Endosc. 2013;78:568–73.CrossRefGoogle Scholar
  20. 20.
    Goetz M, Wang TD. Molecular imaging in gastrointestinal endoscopy. Gastroenterology. 2010;138:828–33.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Joshi BP, Pant A, Duan X, et al. Multimodal video colonoscope for targeted wide-field detection of nonpolypoid colorectal neoplasia. Gastroenterology. 2016;150:1084–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Arnold M, Soerjomataram I, Ferlay J, et al. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64:381–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.PubMedCrossRefGoogle Scholar
  24. 24.
    Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet. 2013;381:400–12.CrossRefGoogle Scholar
  25. 25.
    Shaheen NJ, Falk GW, Iyer PG, et al. ACG clinical guideline: diagnosis and management of Barrett’s esophagus. Am J Gastroenterol. 2016;111:30–50; quiz 51.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cameron AJ, Carpenter HA. Barrett’s esophagus, high-grade dysplasia, and early adenocarcinoma: a pathological study. Am J Gastroenterol. 1997;92:586–91.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Fitzgerald RC, di Pietro M, Ragunath K, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut. 2014;63:7–42.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Weusten B, Bisschops R, Coron E, et al. Endoscopic management of Barrett’s esophagus: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy. 2017;49:191–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Verbeek RE, Leenders M, Ten Kate FJ, et al. Surveillance of Barrett's esophagus and mortality from esophageal adenocarcinoma: a population-based cohort study. Am J Gastroenterol. 2014;109:1215–22.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Spechler SJ, Sharma P, Souza RF, et al. American Gastroenterological Association technical review on the management of Barrett’s esophagus. Gastroenterology. 2011;140:e18–52; quiz e13PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Abrams JA, Kapel RC, Lindberg GM, et al. Adherence to biopsy guidelines for Barrett’s esophagus surveillance in the community setting in the United States. Clin Gastroenterol Hepatol. 2009;7:736–42.. quiz 710PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wani S, Mathur SC, Curvers WL, et al. Greater interobserver agreement by endoscopic mucosal resection than biopsy samples in Barrett’s dysplasia. Clin Gastroenterol Hepatol. 2010;8:783–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Bennett C, Vakil N, Bergman J, et al. Consensus statements for management of Barrett’s dysplasia and early-stage esophageal adenocarcinoma, based on a Delphi process. Gastroenterology. 2012;143:336–46.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kara MA, Peters FP, Rosmolen WD, et al. High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett’s esophagus: a prospective randomized crossover study. Endoscopy. 2005;37:929–36.PubMedCrossRefGoogle Scholar
  35. 35.
    Wani S, Muthusamy VR, Shaheen NJ, et al. Development of quality indicators for endoscopic eradication therapies in Barrett’s esophagus: the TREAT-BE (Treatment With Resection and Endoscopic Ablation Techniques for Barrett’s Esophagus) consortium. Am J Gastroenterol. 2017;112:1032–48.PubMedCrossRefGoogle Scholar
  36. 36.
    Boerwinkel DF, Swager A, Curvers WL, et al. The clinical consequences of advanced imaging techniques in Barrett’s esophagus. Gastroenterology. 2014;146:622–629.e4.PubMedCrossRefGoogle Scholar
  37. 37.
    Sharma P, Dent J, Armstrong D, et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology. 2006;131:1392–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Reid BJ, Blount PL, Feng Z, et al. Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia. Am J Gastroenterol. 2000;95:3089–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Moss A, Bourke MJ, Hourigan LF, et al. Endoscopic resection for Barrett’s high-grade dysplasia and early esophageal adenocarcinoma: an essential staging procedure with long-term therapeutic benefit. Am J Gastroenterol. 2010;105:1276–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Wani S, Abrams J, Edmundowicz SA, et al. Endoscopic mucosal resection results in change of histologic diagnosis in Barrett’s esophagus patients with visible and flat neoplasia: a multicenter cohort study. Dig Dis Sci. 2013;58:1703–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Paris Workshop on Columnar Metaplasia in the Esophagus and the Esophagogastric Junction, Paris, France, December 11–12 2004. Endoscopy 2005;37:879–920.Google Scholar
  42. 42.
    Sharma P, Savides TJ, Canto MI, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on imaging in Barrett’s esophagus. Gastrointest Endosc. 2012;76:252–4.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Committee AT, Thosani N, Abu Dayyeh BK, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE Preservation and Incorporation of Valuable Endoscopic Innovations thresholds for adopting real-time imaging-assisted endoscopic targeted biopsy during endoscopic surveillance of Barrett’s esophagus. Gastrointest Endosc. 2016;83:684–98.e7.CrossRefGoogle Scholar
  44. 44.
    Qumseya BJ, Wang H, Badie N, et al. Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with Barrett’s esophagus: a meta-analysis and systematic review. Clin Gastroenterol Hepatol. 2013;11:1562–70.e1–2.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hoffman A, Korczynski O, Tresch A, et al. Acetic acid compared with i-scan imaging for detecting Barrett’s esophagus: a randomized, comparative trial. Gastrointest Endosc. 2014;79:46–54.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Sharma P, Hawes RH, Bansal A, et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut. 2013;62:15–21.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Sharma P, Bansal A, Mathur S, et al. The utility of a novel narrow band imaging endoscopy system in patients with Barrett’s esophagus. Gastrointest Endosc. 2006;64:167–75.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kara MA, Ennahachi M, Fockens P, et al. Detection and classification of the mucosal and vascular patterns (mucosal morphology) in Barrett’s esophagus by using narrow band imaging. Gastrointest Endosc. 2006;64:155–66.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Singh R, Anagnostopoulos GK, Yao K, et al. Narrow-band imaging with magnification in Barrett’s esophagus: validation of a simplified grading system of mucosal morphology patterns against histology. Endoscopy. 2008;40:457–63.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sharma P, Bergman JJ, Goda K, et al. Development and validation of a classification system to identify high-grade dysplasia and esophageal adenocarcinoma in Barrett’s esophagus using narrow-band imaging. Gastroenterology. 2016;150:591–8.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ngamruengphong S, Sharma VK, Das A. Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett’s esophagus: a meta-analysis. Gastrointest Endosc. 2009;69:1021–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Olliver JR, Wild CP, Sahay P, et al. Chromoendoscopy with methylene blue and associated DNA damage in Barrett’s oesophagus. Lancet. 2003;362:373–4.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wani S, Gaddam S. Editorial: best practices in surveillance of Barrett’s esophagus. Am J Gastroenterol. 2017;112:1056–60.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Muthusamy VR, Kim S, Wallace MB. Advanced imaging in Barrett’s esophagus. Gastroenterol Clin North Am. 2015;44:439–58.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Qumseya BJ, Gendy S, Qumsiyeh Y, et al. Marginal increase in dysplasia detection and very high false positive rate for volumetric laser endomicroscopy in Barrett’s esophagus: systemic review and meta-analysis. Gastrointest Endosc. 2017;85:AB554.CrossRefGoogle Scholar
  56. 56.
    Tsai TH, Zhou C, Tao YK, et al. Structural markers observed with endoscopic 3-dimensional optical coherence tomography correlating with Barrett’s esophagus radiofrequency ablation treatment response (with videos). Gastrointest Endosc. 2012;76:1104–12.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Adler DC, Zhou C, Tsai TH, et al. Three-dimensional optical coherence tomography of Barrett’s esophagus and buried glands beneath neosquamous epithelium following radiofrequency ablation. Endoscopy. 2009;41:773–6.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Nagata T, Ikeda M, Nakayama F. Changing state of gastric cancer in Japan. Histologic perspective of the past 76 years. Am J Surg. 1983;145:226–33.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hamashima C, Ogoshi K, Okamoto M, et al. A community-based, case-control study evaluating mortality reduction from gastric cancer by endoscopic screening in Japan. PLoS One. 2013;8:e79088.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jun JK, Choi KS, Lee HY, et al. Effectiveness of the Korean National Cancer Screening Program in Reducing Gastric Cancer Mortality. Gastroenterology. 2017;152:1319–1328.e7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Lin JT. Screening of gastric cancer: who, when, and how. Clin Gastroenterol Hepatol. 2014;12:135–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Noguchi Y, Yoshikawa T, Tsuburaya A, et al. Is gastric carcinoma different between Japan and the United States? Cancer. 2000;89:2237–46.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Pyo JH, Lee H, Min BH, et al. Long-term outcome of endoscopic resection vs. surgery for early gastric cancer: a non-inferiority-matched cohort study. Am J Gastroenterol. 2016;111:240–9.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Tashiro A, Sano M, Kinameri K, et al. Comparing mass screening techniques for gastric cancer in Japan. World J Gastroenterol. 2006;12:4873–4.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Correa P. Human gastric carcinogenesis: a multistep and multifactorial process – First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–40.PubMedPubMedCentralGoogle Scholar
  66. 66.
    de Vries AC, van Grieken NC, Looman CW, et al. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology. 2008;134:945–52.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dinis-Ribeiro M, Areia M, de Vries AC, et al. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy. 2012;44:74–94.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kim GH, Liang PS, Bang SJ, et al. Screening and surveillance for gastric cancer in the United States: is it needed? Gastrointest Endosc. 2016;84:18–28.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Dixon MF, Genta RM, Yardley JH, et al. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol. 1996;20:1161–81.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Guarner J, Herrera-Goepfert R, Mohar A, et al. Diagnostic yield of gastric biopsy specimens when screening for preneoplastic lesions. Hum Pathol. 2003;34:28–31.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hu YY, Lian QW, Lin ZH, et al. Diagnostic performance of magnifying narrow-band imaging for early gastric cancer: a meta-analysis. World J Gastroenterol. 2015;21:7884–94.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fujiwara S, Yao K, Nagahama T, et al. Can we accurately diagnose minute gastric cancers (</=5 mm)? Chromoendoscopy (CE) vs magnifying endoscopy with narrow band imaging (M-NBI). Gastric Cancer. 2015;18:590–6.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nagahama T, Yao K, Maki S, et al. Usefulness of magnifying endoscopy with narrow-band imaging for determining the horizontal extent of early gastric cancer when there is an unclear margin by chromoendoscopy (with video). Gastrointest Endosc. 2011;74:1259–67.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Li WB, Zuo XL, Li CQ, et al. Diagnostic value of confocal laser endomicroscopy for gastric superficial cancerous lesions. Gut. 2011;60:299–306.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Spigelman AD, Talbot IC, Penna C, et al. Evidence for adenoma-carcinoma sequence in the duodenum of patients with familial adenomatous polyposis. The Leeds Castle Polyposis Group (Upper Gastrointestinal Committee). J Clin Pathol. 1994;47:709–10.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Brosens LA, Keller JJ, Offerhaus GJ, et al. Prevention and management of duodenal polyps in familial adenomatous polyposis. Gut. 2005;54:1034–43.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Syngal S, Brand RE, Church JM, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110:223–62; quiz 263PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Spigelman AD, Williams CB, Talbot IC, et al. Upper gastrointestinal cancer in patients with familial adenomatous polyposis. Lancet. 1989;2:783–5.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Groves CJ, Saunders BP, Spigelman AD, et al. Duodenal cancer in patients with familial adenomatous polyposis (FAP): results of a 10 year prospective study. Gut. 2002;50:636–41.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sauvanet A, Chapuis O, Hammel P, et al. Are endoscopic procedures able to predict the benignity of ampullary tumors? Am J Surg. 1997;174:355–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Lopez-Ceron M, van den Broek FJ, Mathus-Vliegen EM, et al. The role of high-resolution endoscopy and narrow-band imaging in the evaluation of upper GI neoplasia in familial adenomatous polyposis. Gastrointest Endosc. 2013;77:542–50.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Uchiyama Y, Imazu H, Kakutani H, et al. New approach to diagnosing ampullary tumors by magnifying endoscopy combined with a narrow-band imaging system. J Gastroenterol. 2006;41:483–90.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kiesslich R, Mergener K, Naumann C, et al. Value of chromoendoscopy and magnification endoscopy in the evaluation of duodenal abnormalities: a prospective, randomized comparison. Endoscopy. 2003;35:559–63.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Shahid MW, Buchner A, Gomez V, et al. Diagnostic accuracy of probe-based confocal laser endomicroscopy and narrow band imaging in detection of dysplasia in duodenal polyps. J Clin Gastroenterol. 2012;46:382–9.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Society AC. Cancer facts & figures. Am Cancer Soc. 2012;Google Scholar
  86. 86.
    Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol. 2009;4:343–64.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rex DK, Boland CR, Dominitz JA, et al. Colorectal cancer screening: recommendations for physicians and patients from the U.S. Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2017;153:307–23.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med. 1993;329:1977–81.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Holme O, Loberg M, Kalager M, et al. Effect of flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: a randomized clinical trial. JAMA. 2014;312:606–15.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Schoen RE, Pinsky PF, Weissfeld JL, et al. Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. N Engl J Med. 2012;366:2345–57.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kahi CJ, Anderson JC, Waxman I, et al. High-definition chromocolonoscopy vs. high-definition white light colonoscopy for average-risk colorectal cancer screening. Am J Gastroenterol. 2010;105:1301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Dinesen L, Chua TJ, Kaffes AJ. Meta-analysis of narrow-band imaging versus conventional colonoscopy for adenoma detection. Gastrointest Endosc. 2012;75:604–11.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Butterly LF, Chase MP, Pohl H, et al. Prevalence of clinically important histology in small adenomas. Clin Gastroenterol Hepatol. 2006;4:343–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Lieberman D, Moravec M, Holub J, et al. Polyp size and advanced histology in patients undergoing colonoscopy screening: implications for CT colonography. Gastroenterology. 2008;135:1100–5.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Patel SG, Schoenfeld P, Kim HM, et al. Real-time characterization of diminutive colorectal polyp histology using narrow-band imaging: implications for the resect and discard strategy. Gastroenterology. 2016;150:406–18.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Rex DK, Kahi C, O'Brien M, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2011;73:419–22.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Committee AT, Abu Dayyeh BK, Thosani N, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2015;81:502.e1–16.CrossRefGoogle Scholar
  98. 98.
    McGill SK, Evangelou E, Ioannidis JP, et al. Narrow band imaging to differentiate neoplastic and non-neoplastic colorectal polyps in real time: a meta-analysis of diagnostic operating characteristics. Gut. 2013;62:1704–13.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Rees CJ, Rajasekhar PT, Wilson A, et al. Narrow band imaging optical diagnosis of small colorectal polyps in routine clinical practice: the Detect Inspect Characterise Resect and Discard 2 (DISCARD 2) study. Gut. 2017;66:887–95.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Wanders LK, East JE, Uitentuis SE, et al. Diagnostic performance of narrowed spectrum endoscopy, autofluorescence imaging, and confocal laser endomicroscopy for optical diagnosis of colonic polyps: a meta-analysis. Lancet Oncol. 2013;14:1337–47.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kudo S, Hirota S, Nakajima T, et al. Colorectal tumours and pit pattern. J Clin Pathol. 1994;47:880–5.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tanaka S, Sano Y. Aim to unify the narrow band imaging (NBI) magnifying classification for colorectal tumors: current status in Japan from a summary of the consensus symposium in the 79th Annual Meeting of the Japan Gastroenterological Endoscopy Society. Dig Endosc. 2011;23(Suppl 1):131–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    IJspeert JE, Bastiaansen BA, van Leerdam ME, et al. Development and validation of the WASP classification system for optical diagnosis of adenomas, hyperplastic polyps and sessile serrated adenomas/polyps. Gut. 2016;65:963–70.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Rex DK, Hassan C, Bourke MJ. The colonoscopist’s guide to the vocabulary of colorectal neoplasia: histology, morphology, and management. Gastrointest Endosc. 2017;86:253–63.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Bosch SL, Teerenstra S, de Wilt JH, et al. Predicting lymph node metastasis in pT1 colorectal cancer: a systematic review of risk factors providing rationale for therapy decisions. Endoscopy. 2013;45:827–34.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Moss A, Bourke MJ, Williams SJ, et al. Endoscopic mucosal resection outcomes and prediction of submucosal cancer from advanced colonic mucosal neoplasia. Gastroenterology. 2011;140:1909–18.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hayashi N, Tanaka S, Hewett DG, et al. Endoscopic prediction of deep submucosal invasive carcinoma: validation of the narrow-band imaging international colorectal endoscopic (NICE) classification. Gastrointest Endosc. 2013;78:625–32.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Burgess NG, Hourigan LF, Zanati SA, et al. Risk stratification for covert invasive cancer among patients referred for colonic endoscopic mucosal resection: a large multicenter cohort. Gastroenterology. 2017;153:732–742.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Uno Y, Munakata A. The non-lifting sign of invasive colon cancer. Gastrointest Endosc. 1994;40:485–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 2012;10:639–45.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Foersch S, Neurath MF. Colitis-associated neoplasia: molecular basis and clinical translation. Cell Mol Life Sci. 2014;71:3523–35.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Farraye FA, Odze RD, Eaden J, et al. AGA medical position statement on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology. 2010;138:738–45.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Bye WA, Nguyen TM, Parker CE, et al. Strategies for detecting colon cancer in patients with inflammatory bowel disease. Cochrane Database Syst Rev. 2017;9:CD000279.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Ananthakrishnan AN, Cagan A, Cai T, et al. Colonoscopy is associated with a reduced risk for colon cancer and mortality in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2015;13:322–329.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Choi CH, Rutter MD, Askari A, et al. Forty-year analysis of colonoscopic surveillance program for neoplasia in ulcerative colitis: an updated overview. Am J Gastroenterol. 2015;110:1022–34.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Laine L, Kaltenbach T, Barkun A, et al. SCENIC international consensus statement on surveillance and management of dysplasia in inflammatory bowel disease. Gastroenterology. 2015;148:639–651.e28.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    East JE. Colonoscopic cancer surveillance in inflammatory bowel disease: what’s new beyond random biopsy? Clin Endosc. 2012;45:274–7.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Gasia MF, Ghosh S, Panaccione R, et al. Targeted biopsies identify larger proportions of patients with colonic neoplasia undergoing high-definition colonoscopy, dye chromoendoscopy, or electronic virtual chromoendoscopy. Clin Gastroenterol Hepatol. 2016;14:704–12.e4.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Iannone A, Ruospo M, Wong G, et al. Chromoendoscopy for surveillance in ulcerative colitis and Crohn’s disease: a systematic review of randomized trials. Clin Gastroenterol Hepatol. 2017;15:1684–1697.e11.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Iacucci M, Kaplan GG, Panaccione R, et al. A randomized trial comparing high definition colonoscopy alone with high definition dye spraying and electronic virtual chromoendoscopy for detection of colonic neoplastic lesions during IBD surveillance colonoscopy. Am J Gastroenterol. 2017;113:225–34.Google Scholar
  121. 121.
    Mooiweer E, van der Meulen-de Jong AE, Ponsioen CY, et al. Chromoendoscopy for surveillance in inflammatory bowel disease does not increase neoplasia detection compared with conventional colonoscopy with random biopsies: results from a large retrospective study. Am J Gastroenterol. 2015;110:1014–21.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Rasmussen DN, Karstensen JG, Riis LB, et al. Confocal laser Endomicroscopy in inflammatory bowel disease – a systematic review. J Crohns Colitis. 2015;9:1152–9.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Leong RW, Ooi M, Corte C, et al. Full-spectrum endoscopy improves surveillance for dysplasia in patients with inflammatory bowel diseases. Gastroenterology. 2017;152:1337–1344.e3.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Kisiel JB, Konijeti GG, Piscitello AJ, et al. Stool DNA analysis is cost-effective for colorectal cancer surveillance in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2016;14:1778–1787.e8.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Gupta N, Brill JV, Canto M, et al. AGA white paper: training and implementation of endoscopic image enhancement technologies. Clin Gastroenterol Hepatol. 2017;15:820–6.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Patel SG, Rastogi A, Austin G, et al. Gastroenterology trainees can easily learn histologic characterization of diminutive colorectal polyps with narrow band imaging. Clin Gastroenterol Hepatol. 2013;11:997–1003.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Rastogi A, Rao DS, Gupta N, et al. Impact of a computer-based teaching module on characterization of diminutive colon polyps by using narrow-band imaging by non-experts in academic and community practice: a video-based study. Gastrointest Endosc. 2014;79:390–8.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Daly C, Vennalaganti P, Soudagar S, et al. Randomized controlled trial of self-directed versus in-classroom teaching of narrow-band imaging for diagnosis of Barrett’s esophagus-associated neoplasia. Gastrointest Endosc. 2016;83:101–6.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Rzouq F, Vennalaganti P, Pakseresht K, et al. In-class didactic versus self-directed teaching of the probe-based confocal laser endomicroscopy (pCLE) criteria for Barrett’s esophagus. Endoscopy. 2016;48:123–7.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jorge D. Machicado
    • 1
  • Jennifer M. Kolb
    • 2
  • Sachin B. Wani
    • 3
  1. 1.Division of Gastroenterology and HepatologyMayo Clinic Health SystemEau ClaireUSA
  2. 2.Division of Gastroenterology and HepatologyUniversity of Colorado Anschutz Medical CenterAuroraUSA
  3. 3.Interventional Endoscopy, Division of GastroenterologyUniversity of Colorado-DenverAuroraUSA

Personalised recommendations