Stimulated Emission Depletion Microscopy and Related Techniques

  • Barry R. MastersEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 227)


Stimulated Emission Depletion (STED) microscopy is a far-field, scanning fluorescence microscope technique that yields superresolution images of the specimen (Hell and Wichmann in Opt Lett 19:780–782, 1994). The Nobel Prize in Chemistry 2014 was awarded jointly to Eric Betzig, Stefan W. Hell, and William E. Moerner “for the development of super-resolved fluorescence microscopy.” Hell is recognized for his seminal contribution to STED microscopy.


  1. Allen, L., Barnett, S. M., and Padgett, M. J. (2003). Optical Angular Momentum. Bristol: Institute of Physics.Google Scholar
  2. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C., and Woerdman, J. P. (1992). Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Physical Review A, 45, 8185–8189.Google Scholar
  3. Andrews, D. L. (2008). Structured Light and Its Applications, 1st Edition. An Introduction to Phase-Structured Beams and Nanoscale Optical Forces. San Diego: Academic Press.Google Scholar
  4. Andrews, D. L. (2015). Fundamentals of Photonics and Physics. Volume I. Hoboken: John Wiley & Sons.Google Scholar
  5. Andrews, D. L., and Babiker, M. (2013). The Angular Momentum of Light. Cambridge: Cambridge University Press.Google Scholar
  6. Baer, S. C. (1994). Method and Apparatus for improving resolution in scanned optical system. Filed: July 15, 1994, Date of Patent: February 2, 1999. U. S. Patent number: 5,866,911.Google Scholar
  7. Balasubramanian, G., Lazariev, A., Arumugam, S. R., and Duan, D. W. (2014). Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. Current Opinion in Chemical Biology, 20, 69–77.Google Scholar
  8. Beijersbergen, M. W., Coerwinkel, R. P. C., Kristensen, M., and Woerdman, J. P. (1994). Helical-wavefront laser beams produced with a spiral phase plate. Optics Communication, 112, 321–327.Google Scholar
  9. Berry, M., Nye, J., and Wright, F. (1979). The elliptic umbilic diffraction catastrophe. Philosophical Transactions of the Royal Society of London, 291, 453–484.Google Scholar
  10. Berry, M. V. (2004). Optical vortices evolving from helicoidal integer and fractional phase steps. Journal of Optics A, 6, 259–268.Google Scholar
  11. Bertolotti, M. (1999). The History of the Laser. Bristol: Institute of Physics Publishing.Google Scholar
  12. Born, M., and Wolf, E. (1999). Principles of Optics, 7th expanded edition. Cambridge: Cambridge University Press.Google Scholar
  13. Boyd, R. W. (2008). Nonlinear Optics, Third Edition. San Diego: Academic Press.Google Scholar
  14. Braat, J., and Tӧrӧk, P. (2019). Imaging Optics. Cambridge: Cambridge University Press.Google Scholar
  15. Bretschneider, S., Eggeling, C., and Hell, S. W. (2007). Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Physical Review Letters, 98, 218103-1–21803-4.Google Scholar
  16. Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., d’Este, E., Jakobs, J., Eggeling, C., and Hell, S. W. (2013). Nanoscopy with more than 100,000 ‘doughnuts’. Nature Methods, 10, 737–740.Google Scholar
  17. Clausen, M. P., Galiani, S., Bernardino de la Serna, J., Fritzsche, M., Chojnacki, J., Gehmlich, K., Christoffer Lagerholm, B., and Eggeling, C. (2013). Pathways to optical STED microscopy. NanoBioImaging, 1–12.
  18. Coullet, P., Gil, G., and Rocca, F. (1989). Optical vortices. Optics Communication, 73, 403–408.Google Scholar
  19. D’Alessandro, G., and Oppo, G-L., (1992). Gauss-Laguerre modes: A sensible basis for laser dynamics. Optics Communication, 88, 130–136.Google Scholar
  20. Dennis, M. R., O’Holleran, K., and Padgett, M. J. (2009). Singular Optics: Optical Vortices and Polarization Singularities. In: Progress in Optics, Ed. E. Wolf, 53, 293–363.Google Scholar
  21. Dirac, P. A. M. (1927). The quantum theory of emission and absorption of radiation. Proceedings of the Royal Society (London). Series A, 114, 243–265.Google Scholar
  22. Donnert, G., Keller, J., Wurm, C. A., Rizzoli, S. O., Westphal, V., Schönle, A., Jahn, R., Jakobs, S., Eggeling, C., and Hell, S. W. (2007). Two-color far-field fluorescence nanoscopy. Biophysical Journal, 92, L67–L69.Google Scholar
  23. Dyba, M., and Hell, S. W. (2003). Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. Applied Optics, 42, 5123–5129.Google Scholar
  24. Dyba, M., Jakobs, S., and Hell, S. W. (2003). Immunofluorescent stimulated emission depletion microscopy. Nature Biotechnology, 21, 1303–1304.Google Scholar
  25. Eggeling, C., Willig, K. I., Sahl, S. J., and Hell, S. W. (2015). Lens-based fluorescence nanoscopy. Quarterly Reviews of Biophysics, 48, 178–243.Google Scholar
  26. Einstein, A. (1916a). Strahlungs-Emission und -Absorption nach der Quantentheorie. [Emission and absorption of radiation in quantum theory] Deutsche Physikalische Gesellschaft, Verhandlungen, 18, 318–323.Google Scholar
  27. Einstein, A. (1916b). Zur Quantentheorie der Strahlung. [On the quantum theory of radiation]. Physikalische Gesellschaft Zürich, Mitteilungen, 18, 47–62.Google Scholar
  28. Fujita, K., Kobayashi, M., Kawano, S., Yamanaka, M., and Kawata, S. (2007). High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 99, 228105.Google Scholar
  29. Fӧlling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., Jakobs, S., Eggeling, C., and Hell, S. W. (2008). Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods, 5, 943–945.Google Scholar
  30. Fӧrster, T. (1946). Energiewanderung und Fluoreszenz. Naturwissenschaften, 33: 166–175.Google Scholar
  31. Fӧrster, T. (1951). Fluoreszenz Organischer Verbindungen. Gӧttingen: Vandenhoeck & Ruprecht.Google Scholar
  32. Ganic, D., Gan, X., and Gu, M. (2003). Focusing of doughnut laser beams by a high numerical-aperture objective in free space. Optics Express, 11, 2747–2752.Google Scholar
  33. Goodman, J. W. (2017). Introduction to Fourier Optics. Fourth Edition. New York: W. H. Freeman and Company. Chapter 8. Point-Spread Function and Transfer Function Engineering, pp. 231–267.Google Scholar
  34. Gortych, J. E. (2014). Consider a Spherical Patent, IP and Patenting in Technology Business. Boca Raton: CRC Press.Google Scholar
  35. Gu, M. (2000). Advanced Optical Imaging Theory. Berlin: Springer, pp. 31–35.Google Scholar
  36. Han, K. Y., Kim, S. K., Eggeling, C., and Hell, S. W. (2010). Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. Nano Letters, 10, 3199–3203.Google Scholar
  37. Harke, B. (2008). 3D STED microscopy with pulsed and continuous wave lasers. Ph.D. thesis, George-August-University, Gӧttingen.Google Scholar
  38. Harke, B., Keller, J., Ullal, C. K., Westphal, V., Schönle, A., and Hell, S. W. (2008). Resolution scaling in STED microscopy. Optics Express, 16, 4154–4162.Google Scholar
  39. Hell, S. W. (1994). Improvement of lateral resolution in far-field light microscopy using two-photo excitation with offset beams. Optics Communications, 106, 19–24.Google Scholar
  40. Hell, S. W. (2003). Towards fluorescence nanoscopy. Nature Biotechnology, 21, 1347–1355.Google Scholar
  41. Hell, S. W. (2004). Strategy for far-field optical imaging and writing without diffraction limit. Physics Letters A, 326, 140–145.Google Scholar
  42. Hell, S. W. (2009). Microscopy and its focal switch. Nature Methods, 6, 24–32.Google Scholar
  43. Hell, S. W., Jakobs, S., and Kastrup, L. (2003). Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Applied Physics A, 77, 859–860.Google Scholar
  44. Hell, S. W., and Kroug, M. (1995). Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit. Applied Physics B, 60, 495–497.Google Scholar
  45. Hell, S. W., and Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19, 780–782.Google Scholar
  46. Hernández, I. C., Buttafava, M., Boso, G., Diaspro, A., Tosi, A., and Vicidomini, G. (2015). Gated STED microscopy with time-gated single-photon avalanche diode. Biomedical Optics Express, 6, 2258–2267.Google Scholar
  47. Hofmann, M., Eggeling, C., Jakobs, S., and Hell, S.W. (2005). Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America, 102, 17565–17569.Google Scholar
  48. Jones, P. H., Maragò, O. M., and Volpe, G. (2016). Optical Tweezers: Principles and Applications 1st Edition. Cambridge: Cambridge University Press.Google Scholar
  49. Kasha, M. (1950). Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society, 9, 14–19.Google Scholar
  50. Kasha, M. (1960). Paths of molecular excitation. Radiation Research, 2, 243–275.Google Scholar
  51. Klar, T. A., Engel, E., and Hell, S. W. (2001). Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Physical Review E, 64, 06613–06622.Google Scholar
  52. Klar, T. A., and Hell, S. W. (1999). Subdiffraction resolution in far-field fluorescence microscopy. Optics Letters, 24, 954–956.Google Scholar
  53. Klar, T. A., Jakobs, S., Dyba, M., Egner, A., and Hell. S. W. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences of the United States of America, 97, 8206–8210.Google Scholar
  54. Leutenegger, M., Eggeling, C., and Hell, S. W. (2010) Analytical description of STED microscopy performance. Optics Express, 18, 26417–26429.Google Scholar
  55. Lewis, G. N., and Kasha, M. (1944). Phosphorescence and the Triplet State. Journal of the American Chemical Society, 66, 2100–2116.Google Scholar
  56. Loudon, R. (2000). The Quantum Theory of Light, Third Edition. Oxford: Oxford University Press.Google Scholar
  57. Maiman, T. H. (2018). The Laser Inventor Memoirs of Theodore H. Maiman. New York: Springer Nature.Google Scholar
  58. Masajada, J., and Dubik, B. (2001). Optical vortex generation by three plane wave interference. Optics Communications, 198, 21–27.Google Scholar
  59. Masters, B. R. (2001). Selected Papers on Optical Low-Coherence Reflectometry & Tomography, volume MS 165. SPIE Milestone Series. Bellingham: SPIE Optical Engineering Press.Google Scholar
  60. Masters, B. R. (2003). Selected Papers on Multiphoton Excitation Microscopy, SPIE Milestone Series, volume MS 175. Bellingham: SPIE Optical Engineering Press.Google Scholar
  61. Masters, B. R. (2006). Confocal Microscopy and Multiphoton Excitation Microscopy: The Genesis of Live Cell Imaging. Bellingham: SPIE, Optical Engineering Press.Google Scholar
  62. Masters, B. R. (2009). C. V. Raman and the Raman Effect. Optics and Photonics News, March 2009, pp. 41–45.Google Scholar
  63. Masters, B. R. (1996). Selected Papers on Confocal Microscopy. SPIE Milestone Series, volume MS 131. Bellingham: SPIE Optical Engineering Press.Google Scholar
  64. Masters, B. R. (2012). Albert Einstein and the nature of light. Optics and Photonics News, 23, 42–47.Google Scholar
  65. Masters, B. R. (2014). Paths to Förster’s resonance energy transfer (FRET) theory. The European Physical Journal H, 39, 87–139.Google Scholar
  66. Masters, B. R. (2015). What is light? In English and translated into 15 languages. International Commission for Optics News Letter. Accessed August 19, 2017.
  67. Masters, B. R., and So, P. T. C. (2008). Classical and Quantum Theory of One-Photon and Multiphoton Fluorescence Spectroscopy. In: Handbook of Biomedical Nonlinear Optical Microscopy. Eds. Masters, B. R. and So. P. T. C., chapter 5, pp. 91–152. New York: Oxford University Press.Google Scholar
  68. Menon, R., Rogge, P., and Tsai, H.-Y. (2009). Design of diffractive lenses that generate optical nulls without phase singularities. Journal of the Optical Society of America A. Optics and Image Science, 26, 297–304.Google Scholar
  69. Moneron, G., Medda, R., Hein, B., Giske, A., Westphal, V., and Hell, S. W. (2010). Fast STED microscopy with continuous wave fiber lasers. Optics Express, 18, 1302–1309.Google Scholar
  70. Nye, J. F., and Berry, M. V. (1974). Dislocations in wave trains. Proceedings of the Royal Society of London A, 336, 165–190.Google Scholar
  71. Oemrawsingh, S. S. R., van Houwelingen, J. A. W., Eliel, E. R., Woerdman, J. P., Verstegen, E. J. K., Kloosterboer, J. G., and ‘t Hooft, G. W., (2004). Production and characterization of spiral phase plates for optical wavelengths. Applied Optics, 43, 688–694.Google Scholar
  72. O’Holleran, K., Padgett, M. J., and Dennis, M. R. (2006). Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Optics Express, 14, 3039–3044.Google Scholar
  73. Padgett, M. J., and Allen, L. (1955). The Poynting vector in Laguerre-Gaussian laser modes. Optics Communications, 121, 36–40.Google Scholar
  74. Reuss, M., Engelhardt, J., and Hell, S. W. (2010). Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation. Optics Express, 18, 1049–1058.Google Scholar
  75. Rozas, D. (1999). Generation and Propagation of Optical Vortices. A Dissertation submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Physics.Google Scholar
  76. Schӧnle, A. (2003). Point spread function engineering in fluorescence spectroscopy. Doctoral Dissertation, Ruperto-Carola University of Heidelberg, Germany.Google Scholar
  77. Schönle, A., Keller, J., Harke, B., and Hell, S. W. (2008). Diffraction Unlimited Far-Field Fluorescence Microscopy. In: Handbook of Biomedical Nonlinear Optical Microscopy, Eds. Barry R. Masters and Peter T. C. So. Oxford: Oxford University Press, Chapter 24.Google Scholar
  78. Schoonover, R. W. (2009). Studies in Singular Optics and Coherence Theory. Doctoral Thesis, Technische Universiteit Delft, The Netherlands.Google Scholar
  79. Schwentker, A., Bock, H., Hofmann, M., Jakobs, S., Bewersdorf, J., Eggeling, C., and Hell, S. W. (2007). Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique, 70, 269–280.Google Scholar
  80. Sheppard, C. J. R., and Choudhury, A. (2004). Annular pupils, radial polarization, and superresolution. Applied Optics, 43, 4322–4327.Google Scholar
  81. Silfvast, W. T. (2004). Laser Fundamentals, second Edition. Cambridge: Cambridge University Press.Google Scholar
  82. Soskin, M. S., and Vasnetsov, M. V. (2001). Singular optics. in Progress in Optics, edited by E. Wolf, 42, 219–276. Amsterdam: Elsevier.Google Scholar
  83. Sueda, K., Miyaji, G., Miyanaga, N., and Nakatsuka, M. (2004). Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Optics Express, 12, 3548–3553.Google Scholar
  84. Tomonaga, S.-I. (1997). The Story of Spin. Chicago: The University of Chicago Press.Google Scholar
  85. Turnbull, G. A., Robertson, D. A., Smith, G. M., Allen, L., and Padgett, M. J. (1996). Generation of free-space Laguerre-Gaussian modes at millimeter-wave frequencies by use of a spiral phaseplate. Optics Communication, 127, 183–188.Google Scholar
  86. Valeur, D., and Berberan-Santos, M. N. (2012). Molecular Fluorescence, Principles and Applications, Second Edition. Weinheim: Wiley-VCH.Google Scholar
  87. Vaughan, J. M., and Willetts, D. (1979). Interference properties of a light-beam having a helicalwave surface. Optics Communication, 30, 263–267.Google Scholar
  88. Vicidomini, G., Moneron, G., Han, K. Y., Westphal, V., Ta, H., Reuss, M., Engelhardt, J., Eggeling, C., and Hell, S. W. (2011). Sharper low-power STED nanoscopy by time gating. Nature Methods, 8, 571–573.Google Scholar
  89. Vicidomini, G., Schönle, A., Ta, H., Han, K. Y., Moneron, G., Eggeling, C., and Hell, S. W. (2013). STED nanoscopy with time-gated detection: Theoretical and experimental aspects. PLOS ONE, 8(1–12), e54421.Google Scholar
  90. Westphal, V., Blanca, C.M., Dyba, M., Kastrup, L., and Hell, S. W. (2003). Laser-diode-stimulated emission depletion microscopy. Applied Physics Letters, 82, 3125–3127.Google Scholar
  91. Westphal, V., and Hell, S. W. (2005). Nanoscale resolution in the focal plane of an optical microscope. Physical Review Letters, 94, 143903–143907.Google Scholar
  92. Westphal, V., Kastrup, L., and Hell, S. W. (2003). Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy. Applied Physics B Lasers and Optics, 77, 377–380.Google Scholar
  93. Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R., and Hell, S. W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 320, 246–249.Google Scholar
  94. Wildanger, D., Bückers, J., Westphal, V., Hell, S. W., and Kastrup, L. (2009). A STED microscope aligned by design. Optics Express, 17, 16100–16110.Google Scholar
  95. Wildanger, D., Medda, R., Kastrup, L., and Hell, S. W. (2009). A compact STED microscope providing 3D nanoscale resolution. Journal of Microscopy, 236, 35–43.Google Scholar
  96. Wildanger, D., Rittweger, E., Kastrup, L., and Hell, S.W. (2008). STED microscopy with a supercontinuum laser source. Optics Express, 16, 9614–9621.Google Scholar
  97. Willig, K. I., (2006). STED microscopy in the visible range. Doctoral Dissertation, Ruperto-Carola University of Heidelberg, Germany.Google Scholar
  98. Willig, K. I., Harke, B., Medda, R., and Hell, S. W. (2007). STED microscopy with continuous wave beams. Nature Methods, 4, 915–918.Google Scholar
  99. Willig, K. I., Kellner, R. R., Medda, R., Hein, B., Jakobs, S., and Hell S. W. (2006a). Nanoscale resolution in GFP-based microscopy. Nature Methods, 3, 721–723.Google Scholar
  100. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R., and Hell, S. W. (2006b). STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935–939.Google Scholar
  101. Wisniewski-Barker, E., and Padgett, M. J. (2015). Orbital angular momentum. In: Photonics: Scientific Foundations, Technology and Applications, Volume I, First Edition. Edited by David L. Andrews. pp. 321–340.. New York: John Wiley & Sons, Inc.Google Scholar
  102. Wurm, C. A., Kolmakov, K., Göttfert, F., Ta, H., Bossi, M., Schill, H., Berning, S., Jakobs, S., Donnert, G., Belov, V. N., and Hell, S. W. (2012). Novel red fluorophores with superior performance in STED microscopy. Optical Nanoscopy, 1, 1–7.Google Scholar
  103. Yamanaka, M., Kawano, S., Fujita, K., Smith, N. I., Kawata, S. (2008). Beyond the diffraction-limit biological imaging by saturated excitation microscopy. J. Biomed. Opt. 13, 050507.Google Scholar
  104. Yamanaka, M., Tzeng, Y.-K., Kawano, S. Smith, N. I., Kawata, S., Chang, H-C., Fujita, K. (2011). SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging. Biomed. Opt. Express 2, 1946–1954Google Scholar

Further Reading

  1. Allen, L., Courtial, J., and Padgett, M. J. (1999). Matrix formulation for the propagation of light beams with orbital and spin angular momenta. Physical Review E, 60, 7497–7503.Google Scholar
  2. Allen, L., and Padgett, M. (2007). Equivalent geometric transformations for spin and orbital angular momentum of light. Journal of Modern Optics, 54, 487–491.Google Scholar
  3. Allen, L., and Padgett, M. J. (2000). The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density. Optics Communication, 184, 67–71.Google Scholar
  4. Andresen, M., Stiel, A. C., Fölling, J., Wenzel, D., Schönle, A., Egner, A., Eggeling, C., Hell, S. W., and Jakobs, S. (2008). Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nature Biotechnology, 26, 1035–1040.Google Scholar
  5. Aquino, D., Schönle, A., Geisler, C., Middendorf, C. v., Wurm, C. A., Okamura, Y., Lang, T., Hell, S. W., and Egner, A. (2011). Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nature Methods, 8, 353–359.Google Scholar
  6. Beijersbergen, M. W., Allen, L., van der Veen, H. E. L. O., and Woerdman, J. P. (1993). Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communication, 96, 123–132.Google Scholar
  7. Berning, S., Willig, K. I., Steffens, H., Dibaj, P., and Hell, S. W. (2012). Nanoscopy in a living mouse brain. Science, 335, 551.Google Scholar
  8. Bierwagen, J., Testa, I., Fölling, J., Wenzel, D., Jakobs, S., Eggeling, C., and Hell, S. W. (2010). Far-field autofluorescence nanoscopy. Nano Letters, 10, 4249–4252.Google Scholar
  9. Brown, T. G. (2011). Unconventional polarization states: Beam propagation, focusing, and imaging. Progress in Optics, 56, 81–129.Google Scholar
  10. Chen, Z., Hua, L., and Pu, J. (2012). Tight focusing of light beams: Effect of polarization, phase, and coherence. Progress in Optics, 57, 219–260.Google Scholar
  11. Cheng, W. (2013). Optical Vortex Beams: Generation, Propagation and Applications. Dissertation Submitted to the School of Engineering of the University of Dayton in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Electro-Optics.Google Scholar
  12. Cremer, C., and Masters, B. R. (2013). Resolution enhancement techniques in microscopy. European Physical Journal H, 38, 281–344.Google Scholar
  13. Dyba, M., and Hell, S. W. (2002). Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Physical Review Letters, 88, 163901-1–163901-4.Google Scholar
  14. Egner, A., Jakobs, S., and Hell, S. W. (2002). Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proceedings of the National Academy of Sciences of the United States of America, 99, 3370–3375.Google Scholar
  15. Götte, J.B. (2006). Integral and fractional orbital angular momentum of light. Ph.D. Dissertation, Glasgow, Scotland: University of Strathclyde.Google Scholar
  16. Hein, B., Willig, K. I., and Hell, S. W. (2008a). Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proceedings of the National Academy of Sciences of the United States of America, 105, 14271–14276.Google Scholar
  17. Hein, B., Willig, K. I., Westphal, V., Jacobs, S., and Hell, S. W. (2008b). Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. Biophysical Journal, 98, 158–163.Google Scholar
  18. Heintzmann, R. (2003). Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron, 34, 283–291.Google Scholar
  19. Heintzmann, R., Jovin, T., and Cremer, C. (2002). Saturated patterned excitation microscopy—A concept for optical resolution improvement. Journal of the Optical Society of America A. Optics and Image Science, 19, 1599–1609.Google Scholar
  20. Hell, S. W. (2014). Nanoscopy with focused light: Lecture slides. Stefan W. Hell—Nobel Lecture. Accessed April 20, 2019.
  21. Hell, S. W. (1997). Increasing the Resolution of Far-Field Fluorescence Microscopy by Point-Spread-Function Engineering. In: Topics in Fluorescence Spectroscopy; 5: Nonlinear and Two-Photon-Induced Fluorescence, edited by J. Lakowicz. New York: Plenum Press, pp. 361–426.Google Scholar
  22. Hell, S. W. (2007). Far-field optical nanoscopy. Science, 316, 1153–1158.Google Scholar
  23. Hell, S. W., Schrader, M., and van der Voort, H. T. M. (1997). Far-field fluorescence microscopy with three-dimensional resolution in the 100-nm range. Journal of Microscopy, 187, 1–7.Google Scholar
  24. Hell, S. W., Schmidt, R., and Egner, A. (2009). Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photonics, 3, 381–387.Google Scholar
  25. Kastrup, L. (2004). Fluorescence depletion by stimulated emission in single-molecule spectroscopy. Doctoral Dissertation, Ruperto-Carola University of Heidelberg, Germany.Google Scholar
  26. Keller, J., Schӧnle, A., and Hell, S. W. (2007). Efficient fluorescence inhibition patterns for RESOLFT microscopy. Optics Express, 15, 3361–3371.Google Scholar
  27. Kellner, R. R. (2007). STED microscopy with Q-switched microchip lasers. Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences.Google Scholar
  28. Klar, T. A. (2001). Progress in stimulated emission depletion microscopy. Doctoral Dissertation. Ruprecht-Karls-Universität Heidelberg.Google Scholar
  29. Kuśba, J., Bogdanov, V., Gryczynski, I., and Lakowicz, J. R. (1994). Theory of light quenching: Effects on fluorescence polarization, intensity, and anisotropy decays. Biophysical Journal, 67, 2024–2040.Google Scholar
  30. Lalkens, B., Testa, I., Willig, K. I., and Hell, S. W. (2011). MRT letter: Nanoscopy of protein colocalization in living cells by STED and GSDIM. Microscopy Research and Technique, 75, 1–6.Google Scholar
  31. Lauterbach, M. A., Keller, J., Schonle, A., Kamin, D., Westphal, V., Rizzoli, S. O., and Hell, S. W. (2010). Comparing video-rate STED nanoscopy and confocal microscopy of living neurons. Journal of Biophotonics, 3, 417–424.Google Scholar
  32. Leutenegger, M., Ringemann, C., Lasser, T., Hell, S. W., and Eggeling, C. (2012). Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). Optics Express, 20, 5243–5263.Google Scholar
  33. Liu, Y, Ding, Y., Alonas, E., Zhao, W., Santangelo, P. J., Jin, D., Piper, J. A., Teng, J., Ren, Q., and Xi, P. (2012). Achieving λ/10 resolution CW STED nanoscopy with a Ti:Sapphire oscillator. PLoS One, 7, e40003.
  34. Liu, Y., Kuang, C., and Liu, X. (2015). The use of azimuthally polarized sinh-Gauss beam in STED microscopy. Journal of Optics, 17(4), 045609.Google Scholar
  35. Maleev, I. D., and Swartzlander, G. A., Jr. (2003). Composite optical vortices. Journal of Optical Society of America B, 20, 1169–1176.Google Scholar
  36. Meinecke, F. (1996). Stimulierte Emission im Fluoreszenzmikroskop: Das STED-Konzept zur Überwindugn der Abbeschen Beugungsgrenze. Diploma thesis, Ruperto-Carola University of Heidelberg, Germany.Google Scholar
  37. Moneron, G., and Hell, S. W. (2009). Two-photon excitation STED microscopy. Optics Express, 17, 14567–14573.Google Scholar
  38. Okhonin, V. A. (1991). Method of investigating specimen microstructure, Patent SU 1374922, (See also in the USSR patents database SU 1374922) priority date April 10, 1986, Published on July 30, 1991, Soviet Patents Abstracts, Section EI, Week 9218, Derwent Publications Ltd., London, GB; Class S03, p. 4. Cited by patents US 5394268 A (1993) and US RE38307 E1 (1995). From the []. Accessed August 20, 2017.
  39. Pezzagna, S., Rogalla, D., Wildanger, D., Meijer, J., and Zaitsev, A. (2011). Creation and nature of optical centres in diamond for single-photon emission—Overview and critical remarks. New Journal of Physics, 13, 1–27.Google Scholar
  40. Punge, A., Rizzoli, S. O., Jahn, R., Wildanger, J. D., Meyer, L., Schönle, A., Kastrup, L., and Hell, S. W. (2008). 3D reconstruction of high-resolution STED microscope images. Microscopy Research and Technique, 71, 644–650.Google Scholar
  41. Rankin, B. R., Kellner, R. R., and Hell, S. W. (2008). Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman scattering light source. Optics Letters, 33, 2491–2493.Google Scholar
  42. Richards, B., and Wolf, E. (1959). Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London A, 253, 358–379.Google Scholar
  43. Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C., and Hell, S. W. (2009). STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photonics, 3, 144–147.Google Scholar
  44. Schmidt, R., Wurm, C. A., Jakobs, S., Engelhardt, J., Egner, A., and Hell, S. W. (2008). Spherical nanosized focal spot unravels the interior of cells. Nature Methods, 5, 539–544.Google Scholar
  45. Tinnefeld, P., Eggeling, C., and Hell, S. W. (2015). Far-Field Optical Nanoscopy. Berlin: Springer.Google Scholar
  46. Tӧrӧk, P., and Munro, P. (2004). The use of Gauss-Laguerre vector beams in STED microscopy. Optics Express, 12, 3605–3617.Google Scholar
  47. Vaughan, J. M., and Willetts, D. V. (1983). Temporal and interference fringe analysis of TEM01* laser modes. Journal of Optical Society of America, 73, 1018–1021.Google Scholar
  48. Warren, W. S., Rabitz, H., and Dahleh, M. (1993). Coherent control of quantum dynamics: The dream is alive. Science, 259, 1581–1589.Google Scholar
  49. Weiss, S. (2000). Shattering the diffraction limit of light: A revolution in fluorescence microscopy? Proceedings of the National Academy of Sciences of the United States of America, 97, 8747–8749.Google Scholar
  50. Wildanger, D., Maze, J. R., and Hell, S. W. (2011). Diffraction unlimited all-optical recording of electron spin resonances. Physical Review Letters, 107, 017601-1–017601-4.Google Scholar
  51. Xue, Y., Kuang, C., Li, S., Gu, Z., and Liu, X. (2012). Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy. Optics Express, 20, 17653–17666.Google Scholar
  52. Zhan, Q. (2009). Cylindrical vector beams: From mathematical concepts to applications. Advances in Optics and Photonics, 1, 1–57.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Previously, Visiting Scientist Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Previously, Visiting Scholar Department of the History of ScienceHarvard UniversityCambridgeUSA

Personalised recommendations