Advertisement

Metabolomic Profiling of Plants to Understand Reasons for Plant Stress Resilience to Abiotic Stress

  • Rama Prashat G. 
  • Vinutha T. 
Chapter

Abstract

In the constantly changing environment, plants are exposed to various adverse stress conditions such as drought, cold, salinity and flooding. These stresses influence the plant growth and overall crop productivity. Plants have evolved a series of mechanisms for responding to these stresses over a long period during evolution. Under abiotic stress, plant metabolism is disturbed. The reconfiguration of metabolic networks of plant must happen under stress conditions to allow both the maintenance of metabolic homeostasis and the production of compounds that ameliorate the stress. This metabolic reprogramming is necessary to meet the demand of various anti-stress agents. Large scale analysis of highly complex mixtures of metabolites are made possible by a series of integrated technologies and methodologies, like non-destructive NMR (nuclear magnetic resonance spectroscopy), mass spectrometry (MS) based methods including GC–MS (gas chromatography–MS), LC–MS (liquid chromatography–MS) and CE–MS (capillary electrophoresis–MS). The development and adoption of metabolomics and related approaches enable us to gain a comprehensive overview of the plant metabolic response to abiotic stresses.

Keywords

Abiotic stress Metabolite Metabolomics Plants 

References

  1. Allwood JW, Goodacre R (2010) An introduction to liquid chromatography–mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem Anal 21:33–47PubMedCrossRefPubMedCentralGoogle Scholar
  2. Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ (2007) The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol 143:312–325PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bénard C, Bernillon S, Biais B, Osorio S, Maucourt M, Ballias P, Deborde C, Colombié S, Cabasson C, Jacob D (2015) Metabolomic profiling in tomato reveals diel compositional changes in fruit affected by source–sink relationships. J Exp Bot 66:3391–3404PubMedPubMedCentralCrossRefGoogle Scholar
  4. Brosché M, Vinocur B, Alatalo ER, Lamminmäki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Kangasjärvi J (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6:R101PubMedPubMedCentralCrossRefGoogle Scholar
  5. Buri M, Masunaga T, Wakatsuki T (2000) Sulfur and zinc levels as limiting factors to rice production in West Africa lowlands. Geoderma 94:23–42CrossRefGoogle Scholar
  6. Caldana C, Degenkolbe T, Cuadros-Inostroza A, Klie S, Sulpice R, Leisse A, Steinhauser D, Fernie AR, Willmitzer L, Hannah MA (2011) High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant J 67:869–884PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560PubMedCrossRefGoogle Scholar
  9. Cominelli E, Galbiati M, Tonelli C, Bowler C (2009) Water: the invisible problem. Access to fresh water is considered to be a universal and free human right, but dwindling resources and a burgeoning population are increasing its economic value. EMBO Rep 10:671–676PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101:15243–15248PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163PubMedPubMedCentralCrossRefGoogle Scholar
  13. Das A, Rushton PJ, Rohila JS (2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heatstress. Plant (Basel) 6:21Google Scholar
  14. Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL, Tjeerdema RS, Jeffery EH, German JB, Ridley WP, Seiber JN (2006) Applications of metabolomics in agriculture. J Agric Food Chem 54:8984–8994PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, Tripathi P, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics 11:648PubMedPubMedCentralCrossRefGoogle Scholar
  16. Eisenreich W, Bacher A (2007) Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry. Phytochemistry 68:2799–2815PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769PubMedCrossRefPubMedCentralGoogle Scholar
  18. Francki MG, Hayton S, Gummer J, Rawlinson C, Trengove RD (2016) Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain. Plant Biotechnol J 14:649–660PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gagneul D, Aïnouche A, Duhazé C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839PubMedCrossRefPubMedCentralGoogle Scholar
  21. Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223CrossRefGoogle Scholar
  22. Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hall RD, Brouwer ID, Fitzgerald MA (2008) Plant metabolomics and its potential application for human nutrition. Physiol Plant 132:162–175PubMedPubMedCentralGoogle Scholar
  24. Hegeman AD (2010) Plant metabolomics—meeting the analytical challenges of comprehensive metabolite analysis. Brief Funct Genomics 9:139–148PubMedCrossRefPubMedCentralGoogle Scholar
  25. Heyman HM, Dubery IA (2016) The potential of mass spectrometry imaging in plant metabolomics: a review. Phytochem Rev 15:297–316CrossRefGoogle Scholar
  26. Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:10205–10210PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hu C, Shi J, Quan S, Cui B, Kleessen S, Nikoloski Z, Tohge T, Alexander D, Guo L, Lin H et al (2014) Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci Rep 4:50–67Google Scholar
  28. Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD (2009) Analytical and statistical approaches to metabolomics research. J Sep Sci 32:2183–2199PubMedCrossRefPubMedCentralGoogle Scholar
  29. Johnson HE, Broadhurst D, Goodacre R, Smith AR (2003) Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry 62:919–928PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kanani H, Dutta B, Klapa MI (2010) Individual vs. combinatorial effect of elevated CO2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: comparing the early molecular response using time-series transcriptomic and metabolomic analyses. BMC Syst Biol 4:177PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome. Plant Physiol 136:4159–4168PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981PubMedCrossRefPubMedCentralGoogle Scholar
  33. Khakimov B, Bak S, Engelsen SB (2014) High-throughput cereal metabolomics: current analytical technologies, challenges and perspectives. J Cereal Sci 59:393–418CrossRefGoogle Scholar
  34. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58:415–424PubMedCrossRefPubMedCentralGoogle Scholar
  36. Král’ová K, Jampílek J, Ostrovský I (2012) Metabolomics-useful tool for study of plant responses to abiotic stresses. Ecol Chem Eng S 19:133–161Google Scholar
  37. Kueger S, Steinhauser D, Willmitzer L, Giavalisco P (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 70:39–50PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F, Niida R, Matsui M, Saito K, Fernie AR (2011) Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J 67:354–369PubMedCrossRefPubMedCentralGoogle Scholar
  39. Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40PubMedCrossRefPubMedCentralGoogle Scholar
  40. Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286:25435–25442PubMedPubMedCentralCrossRefGoogle Scholar
  41. Li X, Lawas LM, Malo R, Glaubitz U, Erban A, Mauleon R, Heuer S, Zuther E, Kopka J, Hincha DK (2015) Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environ 38:2171–2192PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lommen A, Weseman JM, Smith GO, Noteborn HPJM (1998) On the detection of environmental effects on complex matrices combining off-line liquid chromatography and 1H-NMR. Biodegradation 9:513–525CrossRefGoogle Scholar
  44. Lugan R, Niogret MF, Leport L, Guégan JP, Larher FR, Savouré A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229PubMedCrossRefPubMedCentralGoogle Scholar
  45. Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164:1759–1771PubMedPubMedCentralCrossRefGoogle Scholar
  46. Medina J, Catalá R, Salinas J (2011) The CBFs: three Arabidopsis transcription factors to cold acclimate. Plant Sci 180:3–11PubMedCrossRefPubMedCentralGoogle Scholar
  47. Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S (2018) Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep 8:5710PubMedPubMedCentralCrossRefGoogle Scholar
  48. Misra BB, Assmann SM, Chen S (2014) Plant single-cell and single-cell-type metabolomics. Trends Plant Sci 19:637–646PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19PubMedCrossRefPubMedCentralGoogle Scholar
  50. Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefPubMedCentralGoogle Scholar
  51. Monton MR, Soga T (2007) Metabolome analysis by capillary Electrophoresis–mass spectrometry. J Chromatogr A 1168:237–246PubMedCrossRefPubMedCentralGoogle Scholar
  52. Moussaieff A, Rogachev I, Brodsky L, Malitsky S, Toal TW, Belcher H, Yativ M, Brady SM, Benfey PN, Aharoni A (2013) High-resolution metabolic mapping of cell types in plant roots. Proc Natl Acad Sci U S A 110:1232–1241CrossRefGoogle Scholar
  53. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663CrossRefGoogle Scholar
  54. Nakabayashi R, Saito K (2015) Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol 24:10–16PubMedCrossRefPubMedCentralGoogle Scholar
  55. Okazaki Y, Saito K (2012) Recent advances of metabolomics in plant biotechnology. Plant Biotechnol Rep 6:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  56. Parry MA, Hawkesford MJ (2012) An integrated approach to crop genetic improvement. J Integr Plant Biol 54:250–259PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30:276–291PubMedCrossRefPubMedCentralGoogle Scholar
  58. Ramautar R, Mayboroda OA, Somsen GW, de Jong GJ (2011) CE-MS for metabolomics: developments and applications in the period 2008–2010. Electrophoresis 32:52–65PubMedCrossRefPubMedCentralGoogle Scholar
  59. Rao J, Cheng F, Hu C, Quan S, Lin H, Wang J, Chen G, Zhao X, Alexander D, Guo L et al (2014) Metabolic map of mature maize kernels. Metabolomics 10:775–787CrossRefGoogle Scholar
  60. Ratcliffe RG, Shachar-Hill Y (2005) Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol Rev Camb Philos Soc 80:27–43PubMedCrossRefPubMedCentralGoogle Scholar
  61. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696PubMedPubMedCentralCrossRefGoogle Scholar
  62. Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152:1501–1513PubMedPubMedCentralCrossRefGoogle Scholar
  63. Rogachev I, Aharoni A (2012) UPLC-MS-based metabolite analysis in tomato. Methods Mol Biol 860:129–144PubMedCrossRefPubMedCentralGoogle Scholar
  64. Scossa F, Brotman Y, de Abreu e Lima F, Willmitzer L, Nikoloski Z, Tonga T, Fernie AR (2016) Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Plant Sci 242:47–64PubMedCrossRefPubMedCentralGoogle Scholar
  65. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50PubMedCrossRefPubMedCentralGoogle Scholar
  66. Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208PubMedCrossRefPubMedCentralGoogle Scholar
  67. Soga T, Imaizumi M (2001) Capillary electrophoresis method for the analysis of inorganic anions, organic acids, amino acids, nucleotides, carbohydrates and other anionic compounds. Electrophoresis 22:3418–3425PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sugimoto M, Hirayama A, Robert M, Abe S, Soga T, Tomita M (2010) Prediction of metabolite identity from accurate mass, migration time prediction and isotopic pattern information in CE-TOFMS data. Electrophoresis 31:2311–2318PubMedCrossRefPubMedCentralGoogle Scholar
  69. Sun X, Zhang J, Zhang H, Ni Y, Zhang Q, Chen J, Guan Y (2010) The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 78:840–845PubMedCrossRefPubMedCentralGoogle Scholar
  70. Sun C, Gao X, Fu J, Zhou J, Wu X (2015) Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress. Plant Soil 388:99–117CrossRefGoogle Scholar
  71. Sweetlove LJ, Obata T, Fernie AR (2014) Systems analysis of metabolic phenotypes: what have we learnt? Trends Plant Sci 19:222–230PubMedCrossRefPubMedCentralGoogle Scholar
  72. Terskikh VV, Feurtado JA, Borchardt S, Giblin M, Abrams SR, Kermode AR (2005) In vivo 13C NMR metabolite profiling: potential for understanding and assessing conifer seed quality. J Exp Bot 56:2253–2265PubMedCrossRefPubMedCentralGoogle Scholar
  73. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527PubMedPubMedCentralCrossRefGoogle Scholar
  74. Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577PubMedPubMedCentralCrossRefGoogle Scholar
  75. Tohge T, de Souza LP, Fernie AR (2014) Genome-enabled plant metabolomics. J Chromatogr B 966:7–20CrossRefGoogle Scholar
  76. Toubiana D, Fernie AR, Nikoloski Z, Fait A (2013) Network analysis: tackling complex data to study plant metabolism. Trends Biotechnol 31:29–36PubMedCrossRefPubMedCentralGoogle Scholar
  77. Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078CrossRefGoogle Scholar
  78. Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138PubMedCrossRefPubMedCentralGoogle Scholar
  79. van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265PubMedCrossRefPubMedCentralGoogle Scholar
  80. van Dongen JT, Fröhlich A, Ramírez-Aguilar SJ, Schauer N, Fernie AR, Erban A, Kopka J, Clark J, Langer A, Geigenberger P (2009) Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Ann Bot 103:269–280PubMedCrossRefPubMedCentralGoogle Scholar
  81. Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14:240–245PubMedCrossRefPubMedCentralGoogle Scholar
  82. Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539PubMedCrossRefPubMedCentralGoogle Scholar
  83. Wang C, Hu S, Gardner C, Lübberstedt T (2017) Emerging avenues for utilization of exotic germplasm. Trends Plant Sci 22:624–637PubMedCrossRefPubMedCentralGoogle Scholar
  84. Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W (2008) Integration of metabolomic and proteomic phenotypes: analysis of data covariance dissects starch and RFO metabolism from low and high temperature compensation response in Arabidopsis thaliana. Mol Cell Proteomics 7:1725–1736PubMedPubMedCentralCrossRefGoogle Scholar
  86. Williams BJ, Cameron CJ, Workman R, Broeckling CD, Sumner LW, Smith JT (2007) Amino acid profiling in plant cell cultures: an inter-laboratory comparison of CE-MS and GC–MS. Electrophoresis 28:1371–1379PubMedCrossRefPubMedCentralGoogle Scholar
  87. Winning H, Roldan-Martłn E, Dragsted LO, Viereck N, Poulsen M, Sanchez-Moreno C et al (2009) An exploratory NMR nutri-metabonomic investigation reveals dimethyl sulfone as a dietary biomarker for onion intake. Analyst 134:2344–2351PubMedCrossRefPubMedCentralGoogle Scholar
  88. Wulff-Zottele C, Gatzke N, Kopka J, Orellana A, Hoefgen R, Fisahn J, Hesse H (2010) Photosynthesis and metabolism interact during acclimation of Arabidopsis thaliana to high irradiance and sulphur depletion. Plant Cell Environ 33:1974–1988PubMedCrossRefPubMedCentralGoogle Scholar
  89. Wuolikainen A, Jonsson P, Ahnlund M, Antti H, Marklund SL, Moritz T et al (2016) Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s disease and control subjects. Mol BioSyst 12:1287–1298PubMedCrossRefPubMedCentralGoogle Scholar
  90. Xavier A, Hall B, Hearst AA, Cherkauer KA, Rainey KM (2017) Genetic architecture of phenomic-enabled canopy coverage in Glycine max. Genetics 206:1081–1089PubMedPubMedCentralCrossRefGoogle Scholar
  91. Zuther E, Koehl K, Kopka J (2007) Comparative metabolome analysis of the salt response in breeding cultivars of rice. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Berlin, pp 285–315CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rama Prashat G. 
    • 1
  • Vinutha T. 
    • 2
  1. 1.Division of GeneticsICAR-IARINew DelhiIndia
  2. 2.Division of BiochemistryICAR-IARINew DelhiIndia

Personalised recommendations