Advertisement

Changes on Earth as a Result of Interaction Between the Society and Nature

  • Attila Kerényi
  • Richard William McIntosh
Chapter
Part of the Sustainable Development Goals Series book series (SDGS)

Abstract

Major changes caused by humans in the upper layers of the Earth’s crust, pedosphere, hydrosphere, biosphere and atmosphere are discussed. The environmental effects of mining, energy production and metal processing are analysed. Constructions by the society and their environmental consequences, the transformation of the Earth’s surface are presented. The role of settlements, especially cities in the environmental change and their social and economic significance regarding environmental development is discussed in a subchapter. Interaction of settlements and ecological networks is analysed. Human activities causing soil degradation, the effects of agricultural systems on soils and crop yields are given. Regarding changes in the hydrosphere, the plastic pollution of the world ocean, oil pollution from tankers and derricks are highlighted. Fresh water resources and the degree of water usage together with the reasons of regional water scarcity are analysed. Biosphere modified by humanity and the artificially controlled ecological systems are presented while the reasons for the accelerated destruction of natural wildlife (sixth major extinction period) are analysed. Finally, anthropogenic changes in the gas composition of the atmosphere and climate change, acid deposition, the present and the future of the ozone shield are also discussed.

Bibliography

  1. Abramovitz JN (1996) Sustaining freshwater ecosystems. In: Starke L (ed) State of the world 1996: a Worldwatch Institute report on progress toward a sustainable society. W. W. Norton, New York, pp 60–77Google Scholar
  2. Abramovitz JN (1998) Sustaining the world’s forests. In: Starke L (ed) State of the world 1998: a Worldwatch Institute report on progress toward a sustainable society. W. W. Norton, New York, pp 21–40Google Scholar
  3. Acero JA, González-Asensio B (2018) Influence of vegetation on the morning land surface temperature in a tropical humid urban area. Urban Clim 26:231–243.  https://doi.org/10.1016/j.uclim.2018.09.004CrossRefGoogle Scholar
  4. Almasri MN, Kaluarachchi JJ (2007) Modeling nitrate contamination of groundwater in agricultural watersheds. J Hydrol 343:211–229.  https://doi.org/10.1016/j.jhydrol.2007.06.016CrossRefGoogle Scholar
  5. Altman A (ed) (1998) Agricultural biotechnology. Marcel Dekker, New YorkGoogle Scholar
  6. Ángyán J, Menyhért Z (2004) Alkalmazkodó növénytermesztés, környezet- és tájgazdálkodás (Accommodating plant cultivation, environment and landscape protection). Szaktudás Kiadó Ház, BudapestGoogle Scholar
  7. Annandale GW (2014) Sustainable water supply, climate change and reservoir sedimentation management: technical and economical viability. In: Schleiss AJ, de Cesare G, Franca MJ et al (eds) Reservoir sedimentation. CRC Press, London, pp 3–10CrossRefGoogle Scholar
  8. Ashbolt NJ (2004) Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198:229–238.  https://doi.org/10.1016/j.tox.2004.01.030CrossRefGoogle Scholar
  9. Azapagic A (2004) Developing a framework for sustainable development indicators for the mining and minerals industry. J Clean Prod 12:639–662.  https://doi.org/10.1016/S0959-6526(03)00075-1CrossRefGoogle Scholar
  10. Basson GR (2009) Management of siltation in existing and new reservoirs. In: Proceedings of the 23rd congress of the international commission on large dams, Brasilia, 25–29 May 2009Google Scholar
  11. Bennett J, Zubak-Skees C (2014) Arsenic levels in groundwater across the U.S. https://publicintegrity.org/environment/arsenic-levels-in-groundwater-across-the-u-s/. Accessed 2 Nov 2018
  12. Bill and Melinda Gates Foundation (2009) Annual report 2009. https://www.gatesfoundation.org/Who-We-Are/Resources-and-Media/Annual-Reports. Accessed 16 Nov 2018
  13. Bleviss DL, Walzer P (1990) Energy for motor vehicles. Sci Am 263(3):102–109CrossRefGoogle Scholar
  14. Bolin B (1997) Biogeochemical cycles and climate change. In: A better future for the planet Earth: lectures by the winners of the blue planet prize. The Asahi Glass Foundation, Tokyo, pp 167–183Google Scholar
  15. Breitburg DL, Hondorp D, Audemard C et al (2015) Landscape-level variation in disease susceptibility related to shallow-water hypoxia. PLoS One 10:e0116223.  https://doi.org/10.1371/journal.pone.0116223CrossRefGoogle Scholar
  16. Bright C (2000) Anticipating environmental “surprise”. In: Starke L (ed) State of the world 2000: a Worldwatch Institute report on progress toward a sustainable society. W. W. Norton, New York, pp 22–38Google Scholar
  17. British Petrol (2018) BP statistical review of world energy. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf. Accessed 15 Nov 2018
  18. Brown TJ, Idoine NE, Raycraft ER et al (2018) World mineral production (2012–2016). British Geological Survey, KeyworthGoogle Scholar
  19. Browne MA, Crump P, Niven SJ et al (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179CrossRefGoogle Scholar
  20. Buck LE, Scherr SJ (2011) Moving ecoagriculture into the mainstream. In: Starke L (ed) State of the world 2011: innovations that nourish the planet. W. W. Norton, New York, pp 15–24Google Scholar
  21. Burke L, Reytar K, Spalding M et al (2011) Reefs at risk revisited. World Resources Institute. https://pdf.wri.org/reefs_at_risk_revisited.pdf. Accessed 30 Oct 2018
  22. Butler R (2012) Dams in the rainforest. https://rainforests.mongabay.com/0813.htm. Accessed 11 Nov 2018
  23. Chafe Z (2007) Reducing natural disaster risk in cities. In: Starke L (ed) State of the world 2007: our urban future. W. W. Norton, New York, pp 112–129Google Scholar
  24. Chappellaz J, Barnola JM, Raynaud D et al (1990) Ice-core record of atmospheric methane over the past 160,000 years. Nature 345:127–131CrossRefGoogle Scholar
  25. Cherlet M, Hutchinson C, Reynolds J et al (eds) (2018) World atlas of desertification. Publication Office of the European Union, LuxembourgGoogle Scholar
  26. Coe MT, Foley JA (2001) Human and natural impacts on the water resources of the lake Chad basin. J Geophys Res Atmos 106:3349–3356.  https://doi.org/10.1029/2000JD900587CrossRefGoogle Scholar
  27. Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185.  https://doi.org/10.1007/s10021-006-9013-8CrossRefGoogle Scholar
  28. Conway GR, Pretty JN (1991) Unwelcome harvest: agriculture and pollution. Earthscan Publications, LondonGoogle Scholar
  29. Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 96(408):320–325CrossRefGoogle Scholar
  30. Crutzen PJ, Arnold F (1986) Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’. Nature 324:651–655CrossRefGoogle Scholar
  31. Csizmadia N (2016) Geopillanat: a 21. század megismerésének térképe (Geomoment: map of the exploration of the 21st century). L’Harmattan Kiadó, BudapestGoogle Scholar
  32. De Gouw JA, Parrish DD, Frost GJ et al (2014) Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology. Earth's Future 2:75–82.  https://doi.org/10.1002/2013EF000196CrossRefGoogle Scholar
  33. De Schutter O (2011) Foreword. In: Starke L (ed) State of the world 2011: innovations that nourish the planet. W. W. Norton, New YorkGoogle Scholar
  34. Downing JA, Prairie YT, Cole JJ et al (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397.  https://doi.org/10.4319/lo.2006.51.5.2388CrossRefGoogle Scholar
  35. EIA (1999) Natural gas 1998: issues and trends. U.S. Energy Information Administration. http://webapp1.dlib.indiana.edu/virtual_disk_library/index.cgi/4265704/FID1578/pdf/gas/056098.pdf. Accessed 24 Aug 2018
  36. EIA (2018) How much carbon dioxide is produced when different fuels are burned. U.S. Energy Information Administration. https://www.eia.gov/tools/faqs/faq.php?id=73&t=11. Accessed 23 Aug 2018
  37. Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447.  https://doi.org/10.1890/070062CrossRefGoogle Scholar
  38. Elser J, Bennett E (2011) Phosphorus cycle: a broken biogeochemical cycle. Nature 478:29–31.  https://doi.org/10.1038/478029aCrossRefGoogle Scholar
  39. Engler RE (2012) The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46:12302–12315CrossRefGoogle Scholar
  40. EPA (2011) Quality assurance project plan for the chemical characterization of select constituents relevant to hydraulic fracturing. US Environmental Protection Agency. https://www.epa.gov/sites/production/files/documents/esd-ecb-pd-hf-qapp-final-rev0-0-ws9811.pdf. Accessed 25 Aug 2018
  41. Eriksen M, Maximenko N, Thiel M et al (2013) Plastic pollution in the South Pacific subtropical gyre. Mar Pollut Bull 68:71–76.  https://doi.org/10.1016/j.marpolbul.2012.12.021CrossRefGoogle Scholar
  42. Eriksen M, Lebreton LCM, Carson HS et al (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9:e111913.  https://doi.org/10.1371/journal.pone.0111913CrossRefGoogle Scholar
  43. European Association for Coal and Lignite (2017) World coal market developments: world coal production and seaborne trade. EURACOAL market report. http://t.mail1.euromoneyplc.net/res/euromoney/94e5fdb2bd69ac8517c0b60f05d3fedf.pdf?_ga=2.70828690.324551179.1548503558-1416080448.1548503558. Accessed 19 Dec 2018
  44. European Commission (2017) Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 list of critical raw materials for the EU. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0490&from=GA. Accessed 15 Oct 2018
  45. Falkowski P, Scholes RJ, Boyle E et al (2000) The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–296.  https://doi.org/10.1126/science.290.5490.291CrossRefGoogle Scholar
  46. FAO (2016) AQUASTAT main database. http://www.fao.org/nr/water/aquastat/data/query/index.html. Accessed 20 Nov 2018
  47. FAO, IIASA, ISRIC et al (2012) Harmonized world soil database version 1.2. http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/. Accessed 3 Sept 2018
  48. FAO, ITPS (2015) Status of the world’s soil resources (SWSR): main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. http://www.fao.org/3/a-i5199e.pdf. Accessed 4 Sept 2018
  49. Filippelli GM (2008) The global phosphorus cycle: past, present, and future. Elements 4:89–95.  https://doi.org/10.2113/GSELEMENTS.4.2.89CrossRefGoogle Scholar
  50. Altmann F, von Baratta M, Baumann W-R et al (2001) Fischer Weltalmanach. Fischer Taschenbuch Verlag, FrankfurtGoogle Scholar
  51. FitzGerald DM, Fenster MS, Argow BA et al (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647.  https://doi.org/10.1146/annurev.earth.35.031306.140139CrossRefGoogle Scholar
  52. Flavin C (2011) Preface. In: Starke L (ed) State of the world 2011: innovations that nourish the planet. W. W. Norton, New YorkGoogle Scholar
  53. Folly A, Quinton JN, Smith RE (1999) Evaluation of the EUROSEM model using data from the Catsop watershed, The Netherlands. Catena 37:507–519.  https://doi.org/10.1016/S0341-8162(99)00036-3CrossRefGoogle Scholar
  54. Founda D, Santamouris M (2017) Synergies between urban heat island and heat waves in Athens (Greece) during an extremly hot summer (2012). Sci Rep 7:10973.  https://doi.org/10.1038/s41598-017-11407-6CrossRefGoogle Scholar
  55. Fowler D, Coyle M, Skiba U et al (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B 368:20130164.  https://doi.org/10.1098/rstb.2013.0164CrossRefGoogle Scholar
  56. Fu G, Charles SP, Viney NR et al (2007) Impacts of climate variability on stream-flow in the Yellow River. Hydrol Process 21:3431–3439.  https://doi.org/10.1002/hyp.6574CrossRefGoogle Scholar
  57. Gardner G (2016) The city: a system of systems. In: Mastny L (ed) State of the world 2016: can a city be sustainable. Island Press, Washington, DC, pp 27–44Google Scholar
  58. Gaybullaev B, Chen SC, Gaybullaev D (2012) Changes in water volume of the Aral Sea after 1960. Appl Water Sci 2:285–291.  https://doi.org/10.1007/s13201-012-0048-zCrossRefGoogle Scholar
  59. Geissdoerfer M, Savaget P, Bocken NMP et al (2017) The circular economy: a new sustainability paradigm. J Clean Prod 143:757–768.  https://doi.org/10.1016/j.jclepro.2016.12.048CrossRefGoogle Scholar
  60. GISTEMP Team (2018) GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. https://data.giss.nasa.gov/gistemp/. Accessed 30 Sept 2018
  61. Goudie A (1990) The human impact on the natural environment. Blackwell, OxfordGoogle Scholar
  62. Greeley WB (1925) The relation of geography to timber supply. Econ Geogr 1(1):1–14CrossRefGoogle Scholar
  63. GSNL (2007) A prospector’s guide to uranium deposits in Newfoundland and Labrador. Geological Survey of Newfoundland and Labrador. https://www.nr.gov.nl.ca/nr/mines/prospector/matty_mitchell/Virtual/Guide-to-Uranium-Deposits.pdf. Accessed 3 Sept 2018
  64. Gubek I (2016a) A tengerek és óceánok műanyag szennyezésének komplex hatása – 1. rész: A probléma bemutatása (The complex impact of the plastic pollution in the seas and the oceans, part 1: introduction). Természetvédelmi Közlemények 22:33–61Google Scholar
  65. Gubek I (2016b) A tengerek és óceánok műanyag szennyezésének komplex hatása – 2. rész: Lehetséges megoldások (The complex impact of the plastic pollution in the seas and the oceans, part 2: possible solutions). Természetvédelmi Közlemények 22:62–72Google Scholar
  66. Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophys 29:375–397.  https://doi.org/10.1007/s10712-008-9038-yCrossRefGoogle Scholar
  67. Haggett P (2001) Geography: a global synthesis. Pearson Hall, HarlowGoogle Scholar
  68. Hansen MC, UMD, Google et al. (2017) Global forest change 2000–2017 data download. http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.5.html. Accessed 28 Oct 2018
  69. Hansen J, Ruedy R, Sato M et al (2010) Global surface temperature change. Rev Geophys 48.  https://doi.org/10.1029/2010RG000345
  70. Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853.  https://doi.org/10.1126/science.1244693CrossRefGoogle Scholar
  71. Henshaw PC, Charlson RJ, Burges SJ (2000) Water and the hydrosphere. In: Jacobson MC, Charlson RJ, Rodhe H et al (eds) Earth system science: from biogeochemical cycles to global change, International geophysics, vol 72. Academic Press, San Diego, pp 109–131CrossRefGoogle Scholar
  72. Hoegh-Guldberg O, Poloczanska ES, Skirving W et al (2017) Coral Reef Ecosystems under Climate Change and Ocean Acidification. Frontiers in Marine Science 4Google Scholar
  73. Hofmann DJ, Deshler TL, Aimedieu P et al (1989) Stratospheric clouds and ozone depletion in the Arctic during January 1989. Nature 340:117–121CrossRefGoogle Scholar
  74. Hone D (2011) Natural gas, CO2 emissions and climate change. https://blogs.shell.com/2011/09/19/naturalgas/. Accessed 31 Aug 2018
  75. Hooke RL, Martin-Duque JF, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22(12):4–10CrossRefGoogle Scholar
  76. Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different. Glob Chang Biol 9:500–509.  https://doi.org/10.1046/j.1365-2486.2003.00620.xCrossRefGoogle Scholar
  77. Howarth RW, Ingraffea A, Engelder T (2011) Should fracking stop? Nature 477:271–275.  https://doi.org/10.1038/477271aCrossRefGoogle Scholar
  78. IAEA (2017) Power reactor information system (PRIS). https://pris.iaea.org/PRIS/home.aspx. Accessed 9 Sept 2018
  79. IAEA (2018a) International nuclear and radiological event scale (INES). International Atomic Energy Agency. https://www.iaea.org/topics/emergency-preparedness-and-response-epr/international-nuclear-radiological-event-scale-ines. Accessed 14 Sept 2018
  80. IAEA (2018b) Nuclear power reactors in the world. International Atomic Energy Agency. https://www-pub.iaea.org/MTCD/Publications/PDF/RDS-2-38_web.pdf. Accessed 15 Sept 2018
  81. ICOLD (2019) World register of dams: general synthesis. https://www.icold-cigb.org/GB/world_register/general_synthesis.asp. Accessed 7 Jan 2019
  82. IEA (2014) Key world energy statistics 2014. International Energy Agency. https://www.fossilfuelsreview.ed.ac.uk/resources/Evidence%20-%20Climate%20Science/IEA%20-%20Key%20World%20Energy%20Statistics.pdf. Accessed 19 Dec 2018
  83. IEA (2017) World energy outlook 2017. https://www.iea.org/weo2017/. Accessed 18 Jan 2019
  84. IFL Science (2018) A 14-year-long oil spill nobody talks about could become one of the worst in US history. https://www.iflscience.com/environment/a-14yearlong-oil-spill-nobody-talks-about-could-become-one-of-the-worst-in-us-history/. Accessed 16 Nov 2018
  85. IPCC (2002) Climate change 2001: synthesis report. Third assessment report of the Inter-governmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  86. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  87. IPCC (2015) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf. Accessed 3 Oct 2018
  88. ITOPF (2017) Oil tanker spill statistics 2016. http://Abrawww.itopf.org/fileadmin/data/Photos/Publications/Oil_Spill_Stats_2016_low.pdf. Accessed 8 Oct 2018
  89. Jaffe DA (2000) The nitrogen cycle. In: Jacobson MC, Charlson RJ, Rodhe H et al (eds) Earth system science: from biogeochemical cycles to global change, International geophysics series, vol 72. Academic Press, San Diego, pp 322–342CrossRefGoogle Scholar
  90. Johnson DB (2003) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollut 3:47–66.  https://doi.org/10.1023/A:1022107520836CrossRefGoogle Scholar
  91. Karimi M, Nazari R, Dutova D et al (2018) A conceptual framework for environmental risk and social vulnerability assessment in complex urban settings. Urban Clim 26:161–173.  https://doi.org/10.1016/j.uclim.2018.08.005CrossRefGoogle Scholar
  92. Keenan RJ, Reams GA, Achard F et al (2015) Dynamics of global forest area: results from the FAO global forest resources assessment 2015. For Ecol Manag 352:9–20.  https://doi.org/10.1016/j.foreco.2015.06.014CrossRefGoogle Scholar
  93. Kerényi A, Bihari Z, Fazekas I et al (2018) Environmental protection. In: Kocsis K, Gercsák G, Horváth G et al (eds) National atlas of Hungary: natural environment. Hungarian Academy of Science CSFK Geographical Institute, Budapest, pp 130–143Google Scholar
  94. Kobayashi T, Kuramochi H, Maeda K et al (2014) Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue. Bioresour Technol 169:134–142.  https://doi.org/10.1016/j.biortech.2014.06.071CrossRefGoogle Scholar
  95. Kohli A, Frenken K (2015) Evaporation from artificial lakes and reservoirs. In: FAO AQUASTAT reports. http://www.fao.org/3/a-bc814e.pdf. Accessed 28 Sept 2018
  96. Kolesar SE, Rose KA, Breitburg DL (2017) Hypoxia effects within and intra-guild predation food web of mnemiopsis leidyi ctenophores, larval fish, and copepods. In: Justic D, Rose K, Hetland R et al (eds) Modeling coastal hypoxia. Springer, Cham, pp 279–317CrossRefGoogle Scholar
  97. Kossoff D, Dubbin WE, Alfredsson M et al (2014) Mine tailings dams: characteristics, failure, environmental impacts, and remediation. Appl Geochem 51:229–245.  https://doi.org/10.1016/j.apgeochem.2014.09.010CrossRefGoogle Scholar
  98. Kumar JR, Lee JY (2017) Recovery of critical rare earth elements for green energy technologies. In: Kim H, Alam S, Neelameggham NR et al (eds) Rare metal technology 2017, The minerals, metals and materials series. Springer, Cham, pp 19–29CrossRefGoogle Scholar
  99. Kundu MC, Mandal B, Hazra GC (2009) Nitrate and fluoride contamination in groundwater of an intensively managed agroecosystem: a functional relationship. Sci Total Environ 407:2771–2782.  https://doi.org/10.1016/j.scitotenv.2008.12.048CrossRefGoogle Scholar
  100. Larsen BB, Miller EC, Rhodes MK et al (2017) Inordinate fondness multiplied and redistributed: the number of species on Earth and the new pie of life. Q Rev Biol 92:229–265.  https://doi.org/10.1086/693564CrossRefGoogle Scholar
  101. Lash E, Lash G (2011) “Kicking down the well”: early history of the natural gas industry. https://explorer.aapg.org/story/articleid/2407/kicking-down-the-well. Accessed 2 Dec 2018
  102. Lebreton LCM, van der Zwet J, Damsteeg JW et al (2017) River plastic emissions to the world’s oceans. Nat Commun 8:15611.  https://doi.org/10.1038/ncomms15611CrossRefGoogle Scholar
  103. Lechner A, Keckeis H, Lumesberger-Loisl F et al (2014) The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ Pollut 188:177–181.  https://doi.org/10.1016/j.envpol.2014.02.006CrossRefGoogle Scholar
  104. Lee KN (2007) An urbanizing world. In: Starke L (ed) State of the world 2007: our urban future. W. W. Norton, New York, pp 3–21Google Scholar
  105. Lee A, Zinaman O, Logan J (2012) Opportunities for synergy between natural gas and renewable energy in the electric power and transportation sectors. National Renewable Energy Laboratory and Joint Institute for Strategic Energy Analysis. https://www.nrel.gov/docs/fy13osti/56324.pdf. Accessed 11 Nov 2018
  106. Lehner B, Liermann CR, Revenga C et al (2011) High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front Ecol Environ 9:494–502.  https://doi.org/10.1890/100125CrossRefGoogle Scholar
  107. Li M (2014) World energy 2014–2050: an informal annual report. http://peakoilbarrel.com/world-energy-2014-2050-part-1-2/. Accessed 28 Nov 2018
  108. Li M (2017) World energy 2017–2050: annual report. http://peakoilbarrel.com/world-energy-2017-2050-annual-report/. Accessed 28 Nov 2018
  109. Limburg KE, Breitburg D, Levin LA (2017) Ocean deoxygenation: a climate-related problem. Front Ecol Environ 15:479.  https://doi.org/10.1002/fee.1728CrossRefGoogle Scholar
  110. Lindsey R (2018) Climate change: global sea level. NOAA Climategov. 1 Aug 2018Google Scholar
  111. Liu J, Sui W, Zhao Q (2017) Environmentally sustainable mining: a case study of intermittent cut-and-fill mining under sand aquifers. Environ Earth Sci 76:562–582.  https://doi.org/10.1007/s12665-017-6892-2CrossRefGoogle Scholar
  112. Livi-Bacci M (1992) A concise history of world population. Blackwell, CambridgeGoogle Scholar
  113. MacDonald AM, Bonsor HC, Dochartaigh BÉO et al (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7:024009.  https://doi.org/10.1088/1748-9326/7/2/024009CrossRefGoogle Scholar
  114. Mace GM, Barrett M, Burgess ND et al (2018) Aiming higher to bend the curve of biodiversity loss. Nat Sustain 1:448–451.  https://doi.org/10.1038/s41893-018-0130-0CrossRefGoogle Scholar
  115. Malik A, Yasar A, Tabinda A et al (2012) Water-borne diseases, cost of illness and willingness to pay for diseases inventions in rural communities of developing countries. Iran J Public Health 41(6):39–49Google Scholar
  116. Manning JC (1997) Applied principles of hydrology. Prentice Hall, Upper Saddle RiverGoogle Scholar
  117. Margat J (2007) Great aquifer systems of the world. In: Chery L, de Marsily G (eds) Aquifer systems management: Darcy’s legacy in a world of impending water shortage. CRC Press, London, pp 105–116Google Scholar
  118. Martinez E, Maamaatuaiahutapu K, Taillandier V (2009) Floating marine debris surface drift: convergence and accumulation toward the Sourh Pacific subtropical gyre. Mar Pollut Bull 58:1347–1355.  https://doi.org/10.1016/j.marpolbul.2009.04.022CrossRefGoogle Scholar
  119. Mati BM, Morgan RPC, Quinton JN (2006) Soil erosion modelling with EUROSEM at Embori and Mukogodo catchments, Kenya. Earth Surf Process Landf 31:579–588.  https://doi.org/10.1002/esp.1347CrossRefGoogle Scholar
  120. McDonald RI (2015) Conservation for cities: how to plan and build natural infrastructure. Island Press, Washington, DCCrossRefGoogle Scholar
  121. McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17–37.  https://doi.org/10.1177/0956247807076960CrossRefGoogle Scholar
  122. Meadows D, Randers J, Meadows D (2004) Limits to growth: the 30-year update. White Chelsea Green Publishing Company, White River JunctionGoogle Scholar
  123. Meyer B, Murza S (2011) From mining to refining: innovative concepts for making the most of coal. Paper presented at the 14th European round table on coal, Brussels, 31 May 2011Google Scholar
  124. Milanković M (1930) Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. Borntraeger, BerlinGoogle Scholar
  125. Miller SH, Breitburg DL, Burrel RB (2016) Acidification increases sensitivity to hypoxia in important forage fishes. Mar Ecol Prog Ser 549:1.  https://doi.org/10.3354/meps11695CrossRefGoogle Scholar
  126. Minerals Education Coalition (2018) 2018 Mineral Baby final card. https://mineralseducationcoalition.org/mining-minerals-information/mining-mineral-statistics/2018-mineral-baby-final-card/. Accessed 20 Sept 2018
  127. Mittermeier RA, Gil PR, Hoffman M et al (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico CityGoogle Scholar
  128. Mohr SH, Mudd GM, Giurco M (2012) Lithium resources and production: critical assessment and global projections. Minerals 2:65–84.  https://doi.org/10.3390/min2010065CrossRefGoogle Scholar
  129. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249:810–812CrossRefGoogle Scholar
  130. Moore CJ (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res 108:131–139.  https://doi.org/10.1016/j.envres.2008.07.025CrossRefGoogle Scholar
  131. Moore CJ, Moore SL, Leecaster MK et al (2001) A comparison of plastic and plankton in the North Pacific central gyre. Mar Pollut Bull 42:1297–1300.  https://doi.org/10.1016/S0025-326X(01)00114-XCrossRefGoogle Scholar
  132. Morgan RPC, Nearing MA (eds) (2011) Handbook of erosion modelling. Blackwell, LondonGoogle Scholar
  133. Morgan RPC, Quinton JN, Smith RE et al (1998) The EUROSEM model. In: Boardman J, Favis-Mortlock D (eds) Modelling soil erosion by water, NATO ASI series I: global environmental change, vol 55. Springer, Berlin, pp 389–398CrossRefGoogle Scholar
  134. Mudd GM (2009) The sustainability of mining in Australia: key production trends and their environmental implications for the future. http://users.monash.edu.au/~gmudd/files/SustMining-Aust-Report-2009-Master.pdf. Accessed 15 Sept 2018
  135. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  136. Myhre G, Shindell D, Bréon FM et al (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 659–740Google Scholar
  137. NASA, NOAA (2017) Ocean surface chlorophyll concentration from satellite data 2017. ftp://ftp.nnvl.noaa.gov/View/ALGE/Images/Color/Yearly/. Accessed 31 Aug 2018
  138. National Research Council (2002) Evolutionary and revolutionary technologies for mining. National Academy Press, Washington, DCGoogle Scholar
  139. Newman P, Kenworthy J (2007) Greening urban transportation. In: Starke L (ed) State of the world 2007: our urban future. W. W. Norton, New York, pp 66–85Google Scholar
  140. Niaounakis M (2013) Biopolymers: reuse, recycling, and disposal. Elsevier, OxfordGoogle Scholar
  141. Nicholls RJ (2015) Planning for the impacts of sea level rise. Oceanography 24:144–157.  https://doi.org/10.5670/oceanog.2011.34CrossRefGoogle Scholar
  142. O’Connor H (1955) The empire of oil. Monthly Review Press, New YorkGoogle Scholar
  143. O’Neill P (1985) Environmental chemistry. George Allen and Unwin, LondonCrossRefGoogle Scholar
  144. Pálfi J (2000) Kihaltak és túlélők: félmilliárd év nagy fajpusztulásai (Extinct and survived: major species extinctions over half a billion years). Vince Kiadó, BudapestGoogle Scholar
  145. Park JY, Yoo YJ (2009) Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose. Appl Microbiol Biotechnol 82:415–429.  https://doi.org/10.1007/s00253-008-1799-1CrossRefGoogle Scholar
  146. Peischl J, Ryerson TB, Aikin KC et al (2015) Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. J Geophys Res Atmos 120:2119–2139.  https://doi.org/10.1002/2014JD022697CrossRefGoogle Scholar
  147. Postel SL (2000) Redesigning irrigated agriculture. In: Starke L (ed) State of the world 2000. W. W. Norton, New York, pp 39–58Google Scholar
  148. Postel SL (2011) Getting more crop per drop. In: Starke L (ed) State of the world 2011: innovations that nourish the planet. W. W. Norton, New York, pp 39–48Google Scholar
  149. Probáld F (2014) The urban climate of Budapest: past, present and future. Hung Geogr Bull 63(1):69–79CrossRefGoogle Scholar
  150. Püspöki Z, Forgács Z, Kovács Z et al (2012) Stratigraphy and deformation history of the Jurassic coal bearing series in the Eastern Mecsek (Hungary). Int J Coal Geol 102:35–51.  https://doi.org/10.1016/j.coal.2012.07.009CrossRefGoogle Scholar
  151. Püspöki Z, Hámor-Vidó M, Pummer T et al (2017) A sequence stratigraphic investigation of a Miocene formation supported by coal seam quality parameters – Central Paratethys, N-Hungary. Int J Coal Geol 179:196–210.  https://doi.org/10.1016/j.coal.2017.05.016CrossRefGoogle Scholar
  152. Raup DM, Sepkoski JJ Jr (1982) Mass extinctions in the marine fossil record. Science 215(4539):1501–1503CrossRefGoogle Scholar
  153. Raup DM, Sepkoski JJ Jr (1986) Periodic extinctions of families and genera. Science 231(4740):833–836CrossRefGoogle Scholar
  154. Raup DM, Sepkoski JJ Jr (1988) Testing for periodicity of extinction. Science 241(4861):94–96CrossRefGoogle Scholar
  155. Reid I (2018) Non-energy uses of coal. In: IEA clean coal centre executive summary 91. https://www.iea-coal.org/non-energy-uses-of-coal-report-ccc291/. Accessed 28 Dec 2018
  156. Reinhard CT, Planavsky NJ, Gill BC et al (2016) Evolution of the global phosphorus cycle. Nature 541:386–389.  https://doi.org/10.1038/nature20772CrossRefGoogle Scholar
  157. Richey AS, Thomas BF, Min-Hui L et al (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238.  https://doi.org/10.1002/2015WR017349CrossRefGoogle Scholar
  158. Rim KT (2016) Effects of rare earth elements on the environment and human health: a literature review. Toxicol Environ Health Sci 8:189–200.  https://doi.org/10.1007/s13530-016-0276-yCrossRefGoogle Scholar
  159. Rodell M, Beaudoing HK, L’Ecuyer TS et al (2015) The observed state of the water cycle in the early twenty-first century. J Clim 28:8289–8318.  https://doi.org/10.1175/JCLI-D-14-00555.1CrossRefGoogle Scholar
  160. Roscoe RJ, Steenland K, Halperin WE et al (1989) Lung cancer mortality among nonsmoking uranium miners exposed to radon daughters. JAMA 262(5):629–633CrossRefGoogle Scholar
  161. Roscoe RJ, Deddens JA, Salvan A et al (1995) Mortality among Navajo uranium miners. Am J Public Health 85(4):535–540CrossRefGoogle Scholar
  162. Rosenmund A, Confalonieri R, Roggero PP et al (2005) Evaluation of the EUROSEM model for simulating erosion in hilly areas of Central Italy. Ital J Agrometeorol 2:15–23Google Scholar
  163. Royer SJ, Ferrón S, Wilson ST et al (2018) Production of methane and ethylene from plastic in the environment. PLoS One 13:e0200574.  https://doi.org/10.1371/journal.pone.0200574CrossRefGoogle Scholar
  164. Rózsa P (2016) Anropokőzetek – A negyedik genetikai csoport? (Antropic rocks: are they the fourth genetical group?) In: Benkó Z (ed) Itt az idő! Kőzettani-geokémiai folyamatok és azok geokronológiai vonatkozásai. Paper presented at 7. Kőzettani és Geokémiai Vándorgyűlés, MTA ATOMKI (Hungarian Academy of Science Nuclear Research Intsitute), Debrecen, 22–24 Sept 2016Google Scholar
  165. Rutledge D (2011) Estimating long-term world coal production with logit and probit transforms. Int J Coal Geol 85:23–33.  https://doi.org/10.1016/j.coal.2010.10.012CrossRefGoogle Scholar
  166. Ruttenberg KC (2003) The global phosphorus cycle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 8. Elsevier, Amsterdam, pp 585–643CrossRefGoogle Scholar
  167. Ryker S (2001) Mapping arsenic in groundwater. http://www.geotimes.org/nov01/feature_Asmap.html. Accessed 2 Nov 2018
  168. Sabine CL, Feely RA, Gruber N et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371.  https://doi.org/10.1126/science.1097403CrossRefGoogle Scholar
  169. Santamouris M, Papanikolaou N, Livada I et al (2001) On the impact of urban climate on the energy consumption of buildings. Sol Energy 70:201–216.  https://doi.org/10.1016/S0038-092X(00)00095-5CrossRefGoogle Scholar
  170. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, PrincetonCrossRefGoogle Scholar
  171. Satterthwaite D, McGranahan G (2007) Providing clean water and sanitation. In: Starke L (ed) State of the world 2007: our urban future. W. W. Norton, New York, pp 26–45Google Scholar
  172. Schleiss AJ (2013) Sedimentation of reservoirs. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 901–905CrossRefGoogle Scholar
  173. Schleiss AJ, Franca MJ, Juez C et al (2016) Reservoir sedimentation. J Hydraul Res 54:595–614.  https://doi.org/10.1080/00221686.2016.1225320CrossRefGoogle Scholar
  174. Shiklomanov IA (1993) World fresh water resources. In: Gleick PH (ed) Water in crisis: a guide to the world’s fresh water resources. Oxford University Press, New York, pp 13–24Google Scholar
  175. Shiklomanov IA, Rodda JC (eds) (2003) World water resources at the beginning of the twenty-first century. Cambridge University Press, CambridgeGoogle Scholar
  176. Shirihai H, Jarrett B (2006) Whales, dolphins and other marine mammals of the world (Princeton field guides). Princeton University Press, Princeton, NJGoogle Scholar
  177. Silveira AV, Fuchs MS, Pinheiro DK et al (2015) Recovery of indium from LCD screens of discarded cell phones. Waste Manag 45:334–342.  https://doi.org/10.1016/j.wasman.2015.04.007CrossRefGoogle Scholar
  178. Silverstein K (2017) Japan circling back to nuclear power after Fukushima disaster. https://www.forbes.com/sites/kensilverstein/2017/09/08/japan-may-be-coming-full-circle-after-its-fukushima-nuclear-energy-disaster/#667fff5230e8. Accessed 30 Aug 2018
  179. Singh V, Sahu SK, Kesarkar AP et al (2018) Estimation of high resolution emissions from road transport sector in a megacity Delhi. Urban Clim 26:109–120.  https://doi.org/10.1016/j.uclim.2018.08.011CrossRefGoogle Scholar
  180. Slomp CP, Van Cappellen P (2006) The global marine phosphorus cycle: sensitivity to oceanic circulation. Biogeosciences 4:155–171.  https://doi.org/10.5194/bg-4-155-2007CrossRefGoogle Scholar
  181. Smedley PL (2008) Sources and distribution of arsenic in groundwater and aquifers. In: Appelo T (ed) Arsenic in groundwater: a world problem. Proceedings of an IAH Seminar, Utrecht, 29 Nov 2006Google Scholar
  182. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  183. Sood A, Smakhtin V (2015) Global hydrological models: a review. Hydrol Sci J 60:549–565.  https://doi.org/10.1080/02626667.2014.950580CrossRefGoogle Scholar
  184. Stanners D, Bourdeau P (eds) (1995) Europe’s environment: the Dobris assessment. European Environment Agency, CopenhagenGoogle Scholar
  185. Stephens C, Stair P (2007) Charting a new course for urban public health. In: Starke L (ed) State of the world 2007: our urban future. W. W. Norton, New York, pp 134–147Google Scholar
  186. Stolarski RS (1988) The Antarctic ozone hole. Sci Am 258(1):30–37CrossRefGoogle Scholar
  187. Stolarski RS (2001) History of the study of atmospheric ozone. Ozone Sci Eng 23:421–428.  https://doi.org/10.1080/01919510108962025CrossRefGoogle Scholar
  188. Straka J (2015) Fukushima Daiichi nuclear disaster. https://sites.suffolk.edu/jstraka/2015/10/30/fukushima-daiichi-nuclear-disaster/. Accessed 24 Aug 2018
  189. Stuart T (2011) Post-harvest losses: a neglected field. In: Starke L (ed) State of the world 2011: innovations that nourish the planet. W. W. Norton, New York, pp 99–107Google Scholar
  190. Sumner ME, Noble AD (2003) Soil acidification: the world story. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 1–28Google Scholar
  191. Sütő L, Kozák M, McIntosh RW et al (2007) Secondary mineralisation processes in coal pit heaps and its impact on the environment in NE Hungary. Acta GGM Debrecina Geol Geom Phys Geogr Series 2:41–45Google Scholar
  192. Ten Brink P, Schweitzer JP, Watkins E et al (2016) Plastics marine litter and the circular economy: a briefing by IEEP for the MAVA Foundation. Institute for European Environmental Policy. https://ieep.eu/uploads/articles/attachments/15301621-5286-43e3-88bd-bd9a3f4b849a/IEEP_ACES_Plastics_Marine_Litter_Circular_Economy_briefing_final_April_2017.pdf?v=63664509972. Accessed 15 Nov 2018
  193. Tickler D, Meeuwig JJ, Palomares ML et al (2018) Far from home: distance patterns of global fishing fleets. Sci Adv 4:eaar3279.  https://doi.org/10.1126/sciadv.aar3279CrossRefGoogle Scholar
  194. Török J, Szentesi Á (2002) A természetvédelmi biológia ökológiai alapjai (Ecological bases of nature conservation). In: Török K, Fodor L (eds) A természetes életközösségek megóvásának és monitorozásának aktuális problémái (Actual problems of preserving and monitoring natural ecosystems). Eötvös Loránd Tudományegyetem Természettudományi Kar, Szent István Egyetem Környezetgazdálkodási Intézet, Környezetvédelmi Minisztérium Természetvédelmi Hivatal, Budapest, pp 13–136Google Scholar
  195. Trenberth KE, Smith L, Qian T et al (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8:758–769.  https://doi.org/10.1175/JHM600.1CrossRefGoogle Scholar
  196. U.N. Department of Economic and Social Affairs Population Division (2016) The world’s cities in 2016. http://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2016_data_booklet.pdf. Accessed 18 Oct 2018
  197. U.N. Department of Economic and Social Affairs Population Division (2017) World population prospects: the 2017 revision. DVD editionGoogle Scholar
  198. U.N. Development Programme (2005) Human development report 2005. http://hdr.undp.org/sites/default/files/reports/266/hdr05_complete.pdf. Accessed 1 Aug 2018
  199. UNEP (2002) Global environment outlook 3: past, present and future perspectives. Earthscan Publications, LondonGoogle Scholar
  200. UNEP (2016) The Kigali Amendment to the Montreal Protocol: HFC phase-down. http://multimedia.3m.com/mws/media/1365924O/unep-fact-sheet-kigali-amendment-to-mp.pdf. Accessed 16 Nov 2018
  201. USGS (2002) Rare earth element: critical resources for high technology. U.S. Geological Survey Fact Sheet 087-02. https://pubs.usgs.gov/fs/2002/fs087-02/. Accessed 21 Sept 2018
  202. USGS (2018) Mineral commodity summaries 2018. U.S. Geological Survey. https://minerals.usgs.gov/minerals/pubs/mcs/2018/mcs2018.pdf. Accessed 9 Sept 2018
  203. Van Sebille E, Wilcox C, Lebreton L et al (2015) A global inventory of small floating plastic debris. Environ Res Lett 10:124006.  https://doi.org/10.1088/1748-9326/10/12/124006CrossRefGoogle Scholar
  204. Walker G (2012) A review of technologies for sensing contact location on the surface of a display. J Soc Inf Disp 20:413–440.  https://doi.org/10.1002/jsid.100CrossRefGoogle Scholar
  205. Weiss TC (2015) Water-borne diseases: types and information. https://www.disabled-world.com/health/water-diseases.php. Accessed 2 Nov 2018
  206. West PC, Gerber JS, Engstrom PM et al (2014) Leverage points for improving global food security and the environment. Science 345:325–328.  https://doi.org/10.1126/science.1246067CrossRefGoogle Scholar
  207. WHYMAP, Margat J (2008) Large aquifer systems of the world. www.whymap.org. Accessed 28 Aug 2018
  208. Wilson EO (2016) Half-earth: our planet’s fight for life. Liveright Publishing, New YorkGoogle Scholar
  209. Wischmeier WH, Smith DD (1962) Soil-loss estimation as a tool in soil and water management planning. Paper presented at symposium of Bari on land erosion, 1–6 Oct 1962Google Scholar
  210. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. In: Agriculture handbook no. 537. USDA, Washington, DC, p 58Google Scholar
  211. Wischmeier WH, Smith DD, Uhland RE (1958) Evaluation of factors in the soil loss equation. Agric Eng 39(8):458–462Google Scholar
  212. WMO (2018) Scientific assessment of ozone depletion 2018: executive summary. World Meteorological Organization, Global Ozone Research and Monitoring Project. https://www.esrl.noaa.gov/csd/assessments/ozone/2018/executivesummary.pdf. Accessed 2 Nov 2018
  213. WNA (2019b) Nuclear power in Japan. World Nuclear Association. http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/japan-nuclear-power.aspx. Accessed 25 Jan 2019
  214. WWF (2015) Living blue planet report 2015: species, habitats and human well-being. WWF International. https://c402277.ssl.cf1.rackcdn.com/publications/817/files/original/Living_Blue_Planet_Report_2015_Final_LR.pdf?1442242821. Accessed 22 Oct 2018
  215. WWF (2016a) Living planet report 2016: risk and resilience in a new era. WWF International. http://awsassets.panda.org/downloads/lpr_living_planet_report_2016.pdf. Accessed 11 Oct 2018
  216. WWF (2016b) Living planet report 2016. Technical supplement: living planet index. WWF International and Zoological Society of London. https://d2ouvy59p0dg6k.cloudfront.net/downloads/lpi_technical_supplement_2016.pdf. Accessed 11 Oct 2018
  217. WWF (2018) Living planet report 2018: aiming higher. WWF International. https://c402277.ssl.cf1.rackcdn.com/publications/1187/files/original/LPR2018_Full_Report_Spreads.pdf. Accessed 16 Oct 2018
  218. Yusuf RO, Noor ZZ, Abba AH et al (2012) Methane emission by sectors: a comprehensive review of emission sources and mitigation methods. Renew Sust Energ Rev 16:5059–5070.  https://doi.org/10.1016/j.rser.2012.04.008CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Attila Kerényi
    • 1
  • Richard William McIntosh
    • 2
  1. 1.Landscape Protection and Environmental GeographyUniversity of DebrecenDebrecenHungary
  2. 2.Mineralogy and GeologyUniversity of DebrecenDebrecenHungary

Personalised recommendations