Advertisement

A Semi-supervised Approach to Segment Retinal Blood Vessels in Color Fundus Photographs

  • Md. Abu Sayed
  • Sajib SahaEmail author
  • G. M. Atiqur Rahaman
  • Tanmai K. Ghosh
  • Yogesan Kanagasingam
Conference paper
  • 772 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11526)

Abstract

Segmentation of retinal blood vessels is an important diagnostic procedure in ophthalmology. In this paper we propose an automated blood vessels segmentation method that combines both supervised and un-supervised approaches. A novel descriptor named Local Haar Pattern (LHP) is proposed to describe retinal pixel of interest. The performance of the proposed method has been evaluated on three publicly available DRIVE, STARE and CHASE_DB1 datasets. The proposed method achieves an overall segmentation accuracy of 96%, 96% and 95% respectively on DRIVE, STARE, and CHASE DB1 datasets, which are better than the state-of-the-art methods.

Keywords

Color fundus photographs Vessel segmentation Haar feature Multiscale line detector Random forest 

References

  1. 1.
    Saha, S.K., Xiao, D., Bhuiyan, A., Wong, T.Y., Kanagasingam, Y.: Color fundus image registration techniques and applications for automated analysis of diabetic retinopathy progression: a review. Biomed. Signal Process. Control 47, 288–302 (2019)CrossRefGoogle Scholar
  2. 2.
    Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)CrossRefGoogle Scholar
  3. 3.
    Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46(3), 703–715 (2013)CrossRefGoogle Scholar
  4. 4.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  5. 5.
    Saha, S., Dmoulin, V.: ALOHA: an efficient binary descriptor based on Haar features. In: 19th IEEE International Conference 2012, ICIP, Lake Buena Vista, Orlando, FL, USA, pp. 2345–2348. IEEE (2012)Google Scholar
  6. 6.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  7. 7.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, CVPR 2001, Proceedings of the 2001 IEEE Computer Society Conference, vol. 1, pp. I-511–I-518. IEEE (2001)Google Scholar
  8. 8.
    DRIVE Homepage. https://www.isi.uu.nl/Research/Databases/DRIVE/. Accessed 08 July 2018
  9. 9.
    STARE Homepage. http://cecas.clemson.edu/~ahoover/stare/. Accessed 29 Nov 2018
  10. 10.
    CHASE DB1 Homepage. https://blogs.kingston.ac.uk/retinal/chasedb1/. Accessed 15 Nov 2018
  11. 11.
    Fan, Z., Lu, J., Wei, C., Huang, H., Cai, X., Chen, X.: A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE Trans. Image Process. (2018)Google Scholar
  12. 12.
    Staal, J., Abrmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  13. 13.
    Soares, J.V.B., Leandro, J.J.G., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)CrossRefGoogle Scholar
  14. 14.
    Marin, D., Aquino, A., Gegndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146 (2011)CrossRefGoogle Scholar
  15. 15.
    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  16. 16.
    Budai, A., Bock, R., Maier, A., Hornegger, J., Michelson, G.: Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging 2013 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Md. Abu Sayed
    • 1
  • Sajib Saha
    • 2
    Email author
  • G. M. Atiqur Rahaman
    • 1
  • Tanmai K. Ghosh
    • 1
  • Yogesan Kanagasingam
    • 2
  1. 1.Computational Color and Spectral Image Analysis Lab, Computer Science and Engineering DisciplineKhulna UniversityKhulnaBangladesh
  2. 2.Australian e-Health Research Centre, CSIROFloreatAustralia

Personalised recommendations